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Abstract: This study presents the development, design, and implementation of a

smart cane prototype capable of recognising spatial environments to assist individuals
with visual impairments in navigating obstacle-free paths. The system utilises a non-
contact, non-visual electronic sensing mechanism based on ultrasonic technology.
Ultrasonic sensors are strategically mounted at three positions on the cane—left,
centre, and right (L, C, R). As the cane is swung from side to side, each sensor
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continuously collects distance measurements, which are then averaged to provide a
representative reading for each direction. These average distances are further
processed into geometric estimations known as the Left Side Square Area (LSSA) and
Right-Side Square Area (RSSA), serving as fuzzy logic inputs. A rule-based fuzzy
inference system computes decisions, followed by a defuzzification stage executed
within a microcontroller to determine appropriate responses. The outcomes are
conveyed to the user via audio (beep) and tactile (vibration) feedback. Experimental
trials involving visually impaired participants across two mobility scenarios
demonstrated that the system effectively supports indoor navigation and serves as a
viable prototype for orientation and mobility (O&M) training with modern travel aid
applications.

Keywords: Stick, spatial identification, mobility of the visual mpairments, fuzzy-square
area, sound and vibration cues

Introduction
Based on global data released by the World Health Organisation (WHO) in 2022,
approximately 2.2 billion people worldwide suffer from some degree of visual impairment,
including blindness. Notably, around 1 billion of these cases are classified as preventable or
treatable, with the potential to restore near-normal vision through appropriate medical
interventions (Bhatlawande et al., 2024; Organization, 2024; Tian et al., 2021; Zhang et al.,
2023). In Indonesia, data from the Ministry of Health reveal that cataracts remain the leading
cause of blindness among individuals aged 50 years and above. This finding is supported by
the Rapid Assessment of Avoidable Blindness (RAAB) survey conducted between 2014 and
2016. Cataracts contribute to roughly 81% of the total population affected by visual
impairments, which is estimated at around 8million individuals. Among them, approximately
1.6 million are completely blind, while the remaining 6.4 million experience moderate to
severe vision loss (Kementerian Kesehatan Republik Indonesia, 2021).

Visual impairment is characterised by a severe limitation or loss of visual perception. To
achieve independent movement despite the inability to visually perceive spatial and
environmental cues, individuals with visual impairments rely on O&M skills. Orientation
refers to the cognitive ability to interpret one's environment—such as recognising landmarks,
auditory cues, or tactile markers—using residual senses with or without assistive technology.
This process enables the formation of mental maps to facilitate autonomous activity. In
contrast, mobility focuses on the physical capability to move from one location to another
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using non-visual sensory inputs and, if necessary, assistive devices to ensure safe and directed
travel (Chundury et al., 2022; Ogedengbe et al., 2025).

This study presents an assistive technology in the form of a conventional white cane enhanced
with a detachable electronic module. The system is designed to provide real-time navigational
support for individuals with visual impairments by detecting obstacles such as walls and
surrounding objects. The key innovation lies in the refinement of the detection algorithm
previously introduced in (Supriyadi et al., 2024), which relied on direct input from left and
right ultrasonic sensors. In contrast, the proposed system utilises a novel approach by
calculating rectangular spatial areas from sensor data as input variables for a fuzzy logic-based
decision-making algorithm. The final output is delivered to the user through a combination of
audio beeps and tactile vibrations, offering intuitive and immediate feedback to support safe
and efficient mobility.

Numerous studies have explored the development of electronic assistive technologies aimed
at supporting the independent mobility of individuals with visual impairments. These
technologies generally fall into three primary categories: (1) wearable haptic devices attached
to various parts of the body, (2) robotic systems that function as intelligent surrogates for
human guides or guide dogs, and (3) handheld solutions, commonly realised as smart canes.
The underlying technologies range across contact and non-contact modalities, incorporating
both visual and non-visual sensors such as cameras, sonar, infrared, Inertial Measurement
Units (IMUs), Global Positioning Systems (GPS), and visible light sensors.

Wearable sensor-based systems are primarily designed to substitute visual input with tactile
or auditory feedback through body-mounted devices. For instance, camera modules can
monitor the spatial positioning of a user’s arm relative to surrounding obstacles. This visual
data is processed using deep learning techniques like Fast Region-based Convolutional Neural
Networks (Fast R-CNN) to trigger tactile responses such as vibrations (Lee et al., 2023). The
processed image data is translated into directional motor commands—e.g., prompting arm
rotation to the left or right—to assist users in avoiding detected barriers (Barontini et al.,
2021). Additionally, images of pedestrian and vehicular traffic signals can be analysed to
activate both sound and vibration alerts (Tian et al., 2021). Some systems combine computer
vision, ultrasonic sonar (Qiu et al., 2020), and GPS data (Bhatlawande et al., 2024) to enhance
obstacle detection, distance estimation, and geolocation, with outputs delivered via vibration
patterns to guide user movement (Kleinberg et al., 2023).

Robotic assistive systems treat robots as autonomous guides equipped with a suite of
integrated sensors. These typically include vision-based cameras, infrared-based LiDAR, and
GPS modules. Object detection and environmental mapping are executed through deep

https://doi.org/10.58291/ijec.v4i1.395


International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 1 March 2025
https://doi.org/10.58291/ijec.v4i1.395 192

learning algorithms, often employing YOLOv5 datasets, which process image and spatial data
captured by the sensors. Navigation goals are tracked via GPS, and real-time feedback on
movement and obstacle avoidance is conveyed to users through haptic (vibration) signals
(Zhang et al., 2023).

Handheld assistive technologies, particularly in the form of advanced smart canes, often
combine multiple sensor types—such as cameras, ultrasonic sonar, infrared lasers, LiDAR,
GPS-GSM modules, and visible light detectors—to enhance navigational capabilities. These
devices typically relay audio information to the user via Bluetooth-connected headsets
(Jivrajani et al., 2023). Visual data captured through onboard cameras are analysed using
YOLO and TensorFlow-based deep learning frameworks (Masud et al., 2022). Distance-based
obstacle detection is performed through ultrasonic sensors, often integrated with servomotors
for dynamic scanning (Cardillo et al., 2022). IMU sensors are also employed to monitor hand
grip orientation and cane-swing motion, transmitting motion data to the headset in real-time
(Tanabe et al., 2023). For multi-point navigation, GPS coordinates are processed using the
haversine formula to calculate accurate distances, with the results communicated as auditory
cues (Supriyadi et al., 2021). A notable innovation includes the implementation of LED
transmitters installed at pedestrian crosswalks. These transmitters embed audio signals into
visible light using Visible Light Communication (VLC). When the cane’s photodiode receiver
detects the VLC signal, the information is wirelessly transmitted to the user’s headset (Darlis
et al., 2024).

Research Method
This study adopts a hybrid research methodology that combines simulation and practical
experimentation to develop a spatial orientation system tailored for individuals with visual
impairments. The system’s design requires a systematic selection of materials, hardware
components, and suitable engineering methods. At its core, the system processes distance
array data obtained from ultrasonic sensors, which are then transformed into geometric
representations known as left and right square areas. These spatial measurements serve as
the basis for generating real-time feedback in the form of audio signals and vibrations to assist
user navigation. The development workflow encompasses several key stages: designing the
external casing, assembling the electronic circuitry, and implementing the embedded
software. The software component includes algorithms for square-area computation and
decision-making using fuzzy logic principles.

https://doi.org/10.58291/ijec.v4i1.395
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Box Mechanics
Themechanical design of the device enclosure was developed using Autodesk Fusion 360. The
casing comprises multiple interlocking components that can be manually assembled without
requiring additional tools or fasteners, as depicted in Figure 1. Its primary function is to
securely house the entire electronic system, including all hardwaremodules, and it is designed
to be mounted onto a standard white cane.

The enclosure consists of four essential parts: the main housing, a locking mechanism, a
detachable cover, and a sensor mounting bracket, as illustrated in Figure 1(a). The design is
ambidextrous, featuring index finger grips on both sides to accommodate both right- and left-
handed users. These grips enhance control and stability during lateral cane swings while
ensuring that the sensors remain properly orientated forward.

To enhance accessibility, the enclosure includes tactile indicators that help visually impaired
users distinguish various functional components by touch. Specific design elements include a
recessed charging port for safe cable connection, a touch-sensitive menu and volume control
area marked by an indented circular symbol, a raised power switch (ON/OFF) for quick
identification, a sliding slot mechanism that locks the enclosure onto the cane, a snap-fit latch
securing the cover in place, and a sensor holder with three fixed mounting positions.

The fully assembled enclosure is shown in Figure 1(b). The design adheres to theWorld Health
Organisation (WHO) recommendations regarding weight limits, ergonomic function, and
user-centred identity. The total weight of the enclosure is kept below 300 grams, with the
empty shell weighing approximately 83 grams. Positioned at the upper end of the cane, the
device maintains the core functionalities of traditional O&M techniques while preserving the
visual identity of the cane as an assistive mobility tool.

Electronic Hardware
The design and implementation of electronic hardware to support O&M for individuals with
visual impairments involves three key components: input, data processing, and output, as
depicted in Figure 2. The input section includes three main elements: a sensing unit for
detecting environmental conditions, control buttons for system settings, and a power supply
module. Data processing is managed by a microcontroller unit (MCU), which interprets input
signals and generates appropriate responses. The output system consists of sound and
vibration actuators that provide feedback to the user in real time, helping themnavigate safely.

A digital compass sensor plays a crucial dual role in the system. First, it detects the swinging
motion of the cane—whether from left to right or vice versa. Second, it synchronises the
environmental readings from three ultrasonic sensors mounted on the cane. The swinging
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motion of the cane is interpreted based on specific angle thresholds. If the detected swing
angle is less than 3 degrees, the system assumes the cane is not in active use and remains in
standby mode. When the swing angle ranges between 3 and 15 degrees, the system identifies
that the cane is being used correctly, prompting the ultrasonic sensors to perform distance
measurements and assess spatial conditions. If the swing angle exceeds 15 degrees, the system
automatically refreshes the environmental data to ensure the user receives up-to-date spatial
information. This dynamic sensing strategy allows the system to respond intelligently to user
motion while maintaining energy efficiency and ensuring accurate spatial feedback.

Figure 1 Box Design (a). Parts (b). Combined

https://doi.org/10.58291/ijec.v4i1.395
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Figure 2 Electronic Hardware Block Diagram
The system features two primary touch-sensitive control buttons: one for menu settings and
the other for volume adjustment. The menu button supports four distinct operational modes
that configure the output behaviour of the device: StandbyMode (Mode 1), Sound Only (Mode
2), Vibration Only (Mode 3), and Combined Sound and Vibration (Mode 4). Upon initial
startup, the device defaults to Standby Mode, in which the actuators remain inactive. When
the system is powered on and themenu button is tapped briefly—held for at least one second—
it cycles to the Sound Only mode. Subsequent presses allow the user to switch through the
other modes in sequence.

The volume control button also offers four settings, but instead of toggling output types, it
adjusts the intensity of the sound and vibration feedback. These levels are defined as follows:
Mode 1 (Default, Level 15), Mode 2 (Medium, Level 20), Mode 3 (Strong, Level 25), and Mode
4 (Very Strong, Level 30). These numeric values represent the strength of the feedback signal,
with higher values corresponding to more intense sound and vibration outputs. A detailed
flow of how both the menu and volume settings operate through the touch interface is
illustrated in Figure 3.

https://doi.org/10.58291/ijec.v4i1.395
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Figure 3 Setting Button Cycle
The primary power source for the electronic system housed within the enclosure is a 3.7V,
1200mAh rechargeable lithium battery. However, since all electronic components operate at
a nominal input voltage of 5V DC, the system employs a voltage regulator capable of both step-
up and step-down conversion. The step-up configuration raises the battery output to
approximately 5V to power the entire electronic circuit, while the step-down path adjusts the
voltage to around 4.2V for safe and efficient battery charging. The charging process utilises a
standard 5V DC input with a maximum current of 1A, compatible with typical smartphone
chargers.

All data processing tasks—including interpreting distance measurements, calculating square-
area values, executing fuzzy logic decisions, and integrating information from swing motion,
environmental sensing, and user preferences—are handled by a MCU. The system is built on
the Arduino Nano platform, utilising the ATMega328 chip as its core processor. The detailed
wiring configuration for all electronic components within the system is provided in Table 1.

Table 1 Wiring Configuration
No. Components Pin MCU (Arduino Nano) Pins
1. Compass SDA A4

SCL A5
2. Ultrasonic L TRIG D12

ECHO D11
3. Ultrasonic F TRIG D10

ECHO D9
4. Ultrasonic R TRIG D8

ECHO D7
5. Menu I/O D3
6. Volume I/O D2
7. Sound/beep O D6
8. Vibration/DC motors O D5

https://doi.org/10.58291/ijec.v4i1.395
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It is important to note that all Vcc and GND pins of the electronic components and the MCU
are first routed through a switch before being connected to the 5V DC power regulator. This
ensures centralised power control and allows the system to be turned on or off as needed.

The actuators serve as the output interface that delivers feedback to the user based on detected
environmental conditions. In this system, two types of actuators are employed: a buzzer for
audible alerts (beeps) and a vibration motor for tactile feedback. Together, these components
convey spatial information in real time, enabling users to perceive obstacles or environmental
changes through sound and touch.

Software
The data processing software developed in this study integrates multiple computational
components, including a movement detection algorithm, distance array analysis, averaging of
distance readings, spatial square area calculation, and fuzzy inference using the Sugeno
method. The movement detection algorithm plays a critical role in identifying the current
state of the cane—whether it is stationary, in motion, or swinging. It also functions as a trigger
for activating the fuzzy logic system and ensures synchronisation of distance readings at
varying angular positions.

This algorithm operates by comparing the most recent sensor data with the previous reading.
The difference is then evaluated against a predefined threshold. If the change exceeds the
threshold, the system interprets it as movement; otherwise, it is considered static. In this
research, a movement threshold of 3 degrees was established to differentiate between idle and
active states.

Oncemovement is detected—specifically when the cane swingsmore than 3 degrees—distance
array data are collected from three ultrasonic sensors positioned at the left (L), front (F), and
right (R) of the cane, as illustrated in Figure 4. A single sweep of the cane across space produces
a data package consisting of 30 bytes: 10 bytes for each sensor. These data are then processed
to calculate the average distance for each direction, namely the Left Distance Average (LDA),
Front Distance Average (FDA), and Right Distance Average (RDA). The resulting average
values serve as key inputs for subsequent spatial computation and fuzzy logic analysis.

𝐿𝐷𝐴 = ( ∑10
𝑛=1 𝐿𝐷𝑛)/10 (1)

𝐹𝐷𝐴 = ( ∑10
𝑛=1 𝐹𝐷𝑛)/10 (2)

𝑅𝐷𝐴 = ( ∑10
𝑛=1 𝑅𝐷𝑛)/10 (3)

Equations (1), (2), and (3) show the array data resulting from calculating the average distance
for each side of the sensor.

https://doi.org/10.58291/ijec.v4i1.395
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Figure 4 Sensor Average Reading Configuration

The LSSA and RSSA values are as shown in Figure 5. The size of the LSSA value is influenced
by the LDA value (x-axis, stick reference point) relative to the FDA value (y-axis). Meanwhile,
the RSAA value is influenced by the RDA value (x-axis, stick reference point) on the FDA value
(y-axis). The format of the LSSA and RSSA values is as shown in equations (4) and (5).

Figure 5 Square Area Reading Configuration
 𝐿𝑆𝑆𝐴 = 𝐿𝐷𝐴 𝑥 𝐹𝐷𝐴 (4)

𝑅𝑆𝑆𝐴 = 𝑅𝐷𝐴 𝑥 𝐹𝐷𝐴 (5)

The fuzzy logic algorithm is designed to interpret input data from ultrasonic sensors and
convert it into meaningful output signals that are delivered to the user through actuators—
specifically in the form of auditory beeps and tactile vibrations. This decision-making process
is carried out through three primary stages: fuzzification, inference, and defuzzification.

During fuzzification, the system transforms raw numerical input values—such as distances
measured by the sensors—into linguistic variables. In the inference stage, a rule-based logic
framework evaluates these linguistic inputs to determine appropriate responses based on
predefined conditions. Finally, in the defuzzification stage, the fuzzy output is converted into
a precise control signal that activates the corresponding actuators.

The entire process, from detecting cane swing motion to generating output decisions, is
illustrated in detail in Figure 6. This structured approach enables real-time environmental
interpretation and responsive feedback, enhancing the user's spatial awareness and mobility.

https://doi.org/10.58291/ijec.v4i1.395
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.
Figure 6 Box and Fuzzy Movement Flow Diagram

The initial phase of the fuzzy algorithm is fuzzification, which involves converting crisp
numerical input data into fuzzy sets or linguistic variables, each with an associated degree of
membership—commonly referred to as fuzzy input values. The quality and accuracy of this
transformation are highly dependent on the design of the input membership functions used
in the system.

In this study, the input membership functions are based on square area measurements—
specifically the Left Side Square Area (LSSA) and Right-Side Square Area (RSSA). Both inputs
follow the same logical structure, as defined in Equation (6). Each of these square area values,
expressed in square meters (m²), is categorised into two linguistic terms: S (Small) and B
(Big). The mathematical representations of these membership functions are presented in
Equations (7) and (8), and their graphical illustration is shown in Figure 7.

This fuzzification stage is critical for enabling the fuzzy inference engine to process spatial
data effectively, allowing the system to interpret environmental conditions and provide
intuitive feedback to users through actuators.

https://doi.org/10.58291/ijec.v4i1.395
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𝐿𝑒𝑓𝑡 𝑎𝑛𝑑 𝑅𝑖𝑔ℎ𝑡 𝑆𝑖𝑑𝑒 𝑆𝑞𝑢𝑎𝑟𝑒 𝐴𝑟𝑒𝑎, 𝐿𝑆𝑆𝐴 = 𝑅𝑆𝑆𝐴 = {𝑆, 𝐵} (6)

𝐿𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 𝑆 = {0, 0, 1.25, 1.5} (7)

𝐿𝑖𝑛𝑔𝑢𝑖𝑠𝑡𝑖𝑐 𝐵 =  1.25,  1.5, 4, 4 ) (8)

Inference refers to the logical reasoning process applied to fuzzy input values in order to
generate fuzzy output values, ultimately forming the basis for decision-making processes
(Faisal et al., 2013; Seki & Kuramoto, 2022). At this stage, the system integrates the input
membership functions with a predefined set of fuzzy rules to determine the appropriate fuzzy
outputs. Each rule is systematically evaluated, and the final decision is derived from the
combination and interaction of all applicable rules.

In this study, the Max-Min inference method is employed to assess each fuzzy rule, enabling
a straightforward and computationally efficient rule evaluation process. The rule base
comprises four fuzzy rules, which have been carefully constructed based on the researcher's
insights and practical understanding of the behaviour and dynamics of the cane-mounted
electronic module during movement.

These fuzzy rules are formulated in the standard IF-THEN structure, serving as linguistic
representations of system behaviour under varying input conditions. An example of such a
rule is presented as follows:

Rule1: If x = A1 and y=B1 then Z= C1
Rule 2: If x = A2 and y=B2 then Z= C2

Figure 7 LSSA and RSSA Membership Function Input
The defined fuzzy rules serve to establish the relationship between input variables and the
resulting fuzzy output set. In this smart stick system, the linguistic output variables represent
navigational directions and constraints, which are foundational in forming the fuzzy decision
logic. These output categories include L (Left), NC (No Change—continue moving forward),
R (Right), and A (Alarm—indicating that movement in any direction is not permitted). These

https://doi.org/10.58291/ijec.v4i1.395
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linguistic outputs act as actionable decisions based on environmental input data processed
through the fuzzy algorithm. The system utilises these outputs to guide user behaviour,
enhancing safety and spatial awareness. A complete overview of the four fuzzy rules developed
for this application is provided in Table 2, which outlines the rule structures and their
corresponding output responses based on input scenarios.

Table 2 Fuzzy Rule Base
No.

Inputs Outputs
LSSA RSSA

1. S S A
2. S B R
3. B S L
4. B B NC

The defuzzification stage is responsible for transforming fuzzy output values into precise,
actionable outputs that can be directly applied to the control system (Omrane et al., 2016). In
the proposed system, the Sugeno Weighted Average (WA) method is employed for this
conversion process. This technique calculates a crisp output by considering the weighted
average of rule outcomes, where each output is assigned a specific constant value. For this
design, the output membership values are encoded as pulse constants within the range of -1
to 1. The assigned values are L (Left): -1, NC (No Change): 0, R (Right): 1, and A (Alarm/Alert):
0.5. These values are used to compute the final decision output using the WA method, which
is formally expressed in the following formulation.

𝑊𝐴 = α1z1+ α2z2+…+αnzn
α1+ α2+…+αn      (9)

Equation (9) defines 𝛼𝑛 as the predicate value of the nth fuzzy rule and znz_nzn​ as the
corresponding constant output index. These values are essential in calculating the final crisp
output using the Sugeno Weighted Average (WA) defuzzification method. The resulting
outputs are delivered to the user through sound (beep) and vibration signals, which are
mapped according to the decision made by the fuzzy system. Specifically, a fuzzy output of "L"
(Left) triggers two short beeps or two vibration pulses; "R" (Right) triggers one beep or one
pulse; "NC" (No Change) results in no output; and "A" (Alarm) produces continuous beeping
or vibration. This intuitive output mapping enables the user to quickly interpret directional or
alert information during navigation.

https://doi.org/10.58291/ijec.v4i1.395
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Results and Discussion
The testing phase of this research was conducted through both simulation and practical
implementation. Simulations were performed using MATLAB software to validate the
algorithm and system logic. For real-world evaluation, the electronic hardware system was
tested directly in the hallway of Sekolah Luar Biasa Negeri A (SLBN-A) Citeureup, Cimahi.
This dual testing approach ensured the system's effectiveness in both controlled and real
environmental conditions.

Simulation
The simulation process was conducted to validate that the fuzzy rule base and system design
aligned with the intended logic and the designer’s conceptual understanding before being
translated into code and embedded into the MCU. The fuzzy simulation was developed using
MATLAB, with the number of inputs and outputs configured to match the software design
specifications, as illustrated in Figure 8.

Figure 8 Fuzzy Design – Matlab Simulation
The testing phase was conducted across four distinct scenarios, each designed to represent
one of the fuzzy rule bases outlined in Table 2. The first scenario corresponds to a rule where
the inputs are LSSA (Small) and RSSA (Small), resulting in an output labelled as X. During
this test, square area values ranging from 0 to 200 were applied to both LSSA and RSSA. The
result consistently produced a steady output signal with a fuzzy value of X = 0.5, as illustrated
in Figure 9.

https://doi.org/10.58291/ijec.v4i1.395
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Figure 9 Sample S-S Rule Base Simulation Results
The second testing scenario was designed to evaluate a fuzzy rule base with inputs LSSA
(Small) and RSSA (Big), producing an output classified as Right (R). In this test, the square
area value assigned to LSSAwas set below 1.5, while RSSAwas given a value equal to or greater
than 1.5. The resulting output was a consistent signal within the fuzzy range of either
0<R<0.50 or 0.5<R≤1.

The third scenario assessed the rule base with inputs LSSA (Big) and RSSA (Small), generating
an output identified as Left (L). Here, RSSA was assigned a square area value smaller than 1.5,
and LSSA was given a value greater than 1.5. This setup consistently yielded an output signal
in the fuzzy range of −1≤L<0.

The fourth scenario tested the rule base with both LSSA and RSSA inputs classified as Big,
leading to an output labelled as No Change (NC). The test was conducted by assigning square
area values greater than 1.5 to both LSSA and RSSA, which resulted in a stable signal output
of NC = 0.

Practice
The evaluation of the standard white cane prototype, enhanced with an integrated electronic
system box, was conducted to verify the proper functioning of the fuzzy rule base embedded
within the MCU. This testing aimed to ensure that the system operated as expected, in
alignment with both the designer's conceptual framework and prior simulation outcomes. The
test involved two distinct scenarios, each performed by a different participant with visual
impairments. Both individuals are completely blind and serve as employees as well as O&M
instructors at SLBN-A Citeureup Cimahi, as shown in Figure 10. Each participant conducted
the trial once, navigating a public hall space that lacks specialised infrastructure or guiding
tracks for individuals with visual impairments.

https://doi.org/10.58291/ijec.v4i1.395
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Figure 10 Direct Testing of an Electronic System Prototype by a Individuals with Visual Impairments 10(a)
First User 10(b) Second User
In the first trial, depicted in Figure 10a, the user was instructed to navigate using the cane
equipped with the electronic system, relying on directional guidance provided through audio
(beep) and vibration signals. For this scenario, the user was informed that their initial position
faced southeast and was directed to reach a door located at the opposite end of the hall, facing
north, as illustrated by the blue trajectory in Figure 11. Table 3 presents the manually recorded
test outcomes and measurement data. When the cane detected obstacles, specifically tables 5
and 6, the system activated (positions 3, 4, and 5), generating beeping and vibrating signals at
one-second intervals—indicating a command to turn right (R). During segments where no
obstacles were detected (positions 6 to 25), no signals were issued (NC), allowing the user to
proceed freely and intuitively toward the intended destination. Upon detecting table 7, which
lacked a tablecloth and was adjacent to the wall, the system resumed activation (positions 26
and 27), emitting double pulses per second, signalling the user to veer left (L). In this instance,
sensor readings were affected by reflections from the wall, as the sensor’s position was slightly
lower than the tabletop—resulting in the cane making physical contact with the table.

In the second trial, shown in Figure 10b, another user performed the navigation task using the
same device but with a different obstacle arrangement and test scenario. This time, the user
began facing north and was instructed to proceed forward whenever no guidance signal was
present (NC). However, if a directional cue was received, they were required to follow it (either
L or R), as indicated by the red path in Figure 11. Table 4 outlines the corresponding test results
and manual measurements. At the start of the journey (positions 1–4), the cane detected an
obstacle on the right detection area (RDA) more than 2.5 meters away, while the left and right
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square sensor areas (LSSA and RSSA) exceeded 4 m². Under these conditions, no alert was
triggered (NC), allowing the user to continue forward as planned. When the system detected
obstacles such as the stage and table 2 (positions 5–7), it responded with a left-turn signal—
beeps and vibrations at two pulses per second—prompting the user to turn left (L).
Subsequently, when detecting wall and table 2 from a distance greater than 1.5 meters
(positions 8–17), the system remained silent (NC), and the user continued forward in
accordance with the instructions.

Figure 11 First (Blue) and Second (Red) User Test Results Scenario
Table 3 First User Testing Results Data Per Step

Position
to

Distance Average
Input (m)

Square
Input Area

(m2)

Output
(Signal

Information)

Information

LDA FDA RDAs LSSA RSSA
1-2 >4 1.70 >4 >4 >4 NC No obstacle detection

3 1 1.4 >4 1.4 >4 R Left obstacle
detection (table 5, 6)

4 0.95 1.5 >4 1.42 >4 R Left obstacle
detection (table 5, 6)

5 0.8 1.8 >4 1.44 >4 R Left obstacle
detection (table 5, 6)

6-25 >4 >4 >4 >4 >4 NC No obstacle detection

26 >4 1.35 1.1 >4 1.48 L Right obstacle
detection (wall)

27 >4 1.5 1 >4 1.5 L Right obstacle
detection (wall)

28 >4 >4 1.4 >4 >4 NC No obstacle detection
29 >4 >4 1.5 >4 >4 NC No obstacle detection
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Table 4 Second User Test Results Data Per Step

Position
to

Distance Average
Input (m)

Square
Input Area

(m2)

Output
(Signal

Information)

Information

LDA FDA RDAs LSSA RSSA

1-4 >4 >4 >2.5 >4 >4 NC Right obstacle
detection >2.5

5 >4 >4 0.3 >4 1.2 L Right obstacle
detection (stage)

6
>4

1.4
0.5 >4 0.7 L Right obstacle

detection (stage,
table 2)

7
>4

1.3
0.9 >4 1.2 L Right obstacle

detection (stage,
table 2)

8-17 >1.5 >4 >1.5 >4 >4 NC Left-right obstacle
detection > 1.5

Conclusions
This study introduces an assistive electronic system mounted on a standard white cane,
designed to support the mobility of visually impaired individuals by providing path selection
cues through auditory (beeping) and tactile (vibration) signals. The system's functionality was
evaluated through both simulation and real-world trials. Practical testing involved two
individuals with visual impairments participating in navigating different scenarios within the
hall of SLBN-A Citeureup Cimahi. The system identifies environmental conditions using a tri-
sensor ultrasonic setup (left, front, and right), which is processed into two square area
variables—Left-Side Sensing Area (LSSA) and Right-Side Sensing Area (RSSA)—serving as
inputs to a fuzzy logic algorithm. Results from both user trials demonstrate that the system
effectively detects obstacles and delivers navigational cues, offering a promising enhancement
to traditional orientation methods, such as the eight cardinal directions. The resulting data
were analyzed using a confusion matrix approach, yielding perfect classification metrics.
Specifically, the system achieved an accuracy of 100%, with sensitivity and specificity also
recorded at 100%. These results indicate that the smart cane reliably detects both the presence
and absence of obstacles, effectively distinguishing between safe and obstructed paths.
Furthermore, the system shows potential for development as a new O&M training approach
for individuals with visual impairments. To address limitations in detecting vertically
misaligned objects beyond the sensor's range, additional hardware capable of vertical
scanning can be incorporated. Moreover, the integration of digital filtering techniques before
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the decision-making process may reduce signal disturbances caused by angled obstacle
reflections.
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