
International Journal of Engineering Continuity

Correspondents Author:
Eko Heri Susanto, Department of Informatics, National Institute of Technology Malang, East Java, Indonesia
Email: ekoheris@lecturer.itn.ac.id

Received July 29 2025; Revised September 23, 2025; Accepted September 24, 2025; Published September 25, 2025.
1

Integration of Javanese Sengkalan and Steganography
for Key Exchange in End-to-End Encryption over HTTP

Eko Heri Susanto
Department of Informatics, National Institute of Technology Malang,
East Java, Indonesia
Joseph Dedy Irawan
Department of Informatics, National Institute of Technology Malang,
East Java, Indonesia

Fikri Pradana Efendi
Department of Informatics, National Institute of Technology
Malang, East Java, Indonesia

Abstract: This research proposes an HTTP-based end-to-end encryption key exchange
mechanism without TLS. The system uses Javanese Sengkalan to convert OTPs into private
and public key pairs. The public key is embedded into images using steganography. Before
being encrypted with ChaCha20, the data is compressed with the Brotli algorithm. To enhance
randomness, a nonce is generated by converting the Gregorian date to the Javanese calendar,
then hashed with SHA-256. Tests were conducted on four aspects: man-in-the-middle attacks,
data size efficiency, randomness of the encryption results, and the entropy value of the key
exchange. The results show that this approach is suitable for devices with limited resources.
However, the entropy value is still low, so the system is not sufficiently secure against brute-
force attacks. The contribution of this work lies in introducing a unique key exchange method
that integrates Javanese Sengkalan with steganography.

Keywords: HTTP, End-to-End Encryption, Sengkalan, Steganography, encryption key
exchange

Introduction
Hypertext Transfer Protocol (HTTP) is a standard protocol for exchanging data on the web
(Fielding et al., 1997; Rescorla, 2000), but it is still vulnerable because data is sent in plain
text. Although there are alternatives such as HTTPS and SHTTP, neither is completely secure

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

2

(Musliyana et al., 2018; Blanco, 2020). Several studies have shown that HTTPS still has
security holes that can be exploited through attacks such as FREAK, Logjam, and SSL
stripping (Sirohi et al., 2017; Afanasyev et al., 2016). One example of SSL stripping is when an
attacker uses the session hijacking attack method (Hossain et al., 2018). In addition, there are
also other forms of attacks, namely Man-in-the-Middle (MITM) (Chordiya et al., 2018). The
common form of this MITM attack is the theft of Wi-Fi passwords using a Single-Board
Computer device (Idiyatullin et al, 2021). Based on these findings, it can be concluded that
neither HTTP nor HTTPS can guarantee absolute security.

Based on research conducted in several developed countries, HTTP security is still not fully
adequate. For example, a study in China in 2019 showed that out of 6,571,445 web server
services, only 33% used HTTPS, while the remaining 67% still relied on HTTP, which is
vulnerable to security risks (Huang, et al, 2019). A report from the Center for Strategic and
International Studies stated that from 2006 to 2024, there have been more than 600 global
cyberattacks, resulting in losses amounting to billions of US dollars (Center for Strategic and
International Studies [CSIS], 2024). Therefore, cybersecurity, including HTTP security, is
extremely crucial.

Various efforts have been made to improve HTTPS security, one of which is the automation of
public key certificate authorities, as implemented in the Let’s Encrypt project (Aas et al.,
2019). However, this approach still involves third parties in the distribution of public keys.
Several studies have shown that this type of certificate management can negatively impact
network performance. NSS Labs (Taylor, 2019) noted that the SSL/TLS decryption process
enabled on Next Generation Firewalls (NGFW) can reduce connection speeds by up to 92%,
decrease average throughput by 60% and evenmore than 90% for some vendors, and increase
latency by up to 672%. These findings indicate that public key management in HTTPS systems
is still not optimal in terms of performance.

Various approaches have been developed to improve HTTP security, such as vulnerability
detection (Ozkan-Okay et al., 2023), storing public keys in a dedicated server folder (Akram
et al., 2024), and implementing end-to-end encryption at the TLS layer with lightweight
algorithms such as KATAN (Ukpebor et al., 2023) and ChaCha20 (Lima et al., 2022; Susanto
et al., 2025). However, the use of static keys and the lack of explanation of the key exchange
mechanism are weaknesses. Other efforts, such as the 6-D Lorentz hyperchaos system for key
distribution via the cloud (Man et al., 2024), are also considered inefficient due to the high
computational burden. Meanwhile, protection against attacks such as BREACH and efforts to
increase cookie privacy still have limitations, both in terms of effectiveness and the risk of
attacks such as XSS (Palacios et al., 2022). Innovative approaches, such as using the Javanese

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

3

calendar system to generate unique keys, are also not completely secure because the
conversion pattern can still be guessed even if it has been hashed with Hash-256 (Susanto et
al., 2025).

Although various efforts have been made to improve the security of HTTP/HTTPS
communications, such as the use of lightweight encryption algorithms and end-to-end
encryption approaches, namely KATAN (Ukpebor et al., 2023) and Chacha20 (Susanto et al.,
2025), they still have weaknesses. One of the main weaknesses is still found in the encryption
key exchange mechanism. The use of static keys, key distribution through third parties, and
cloud-based approaches with high computational loads pose security risks and reduce system
performance (Taylor, 2019). In addition, alternative solutions such as storing keys on servers
(Akram et al., 2024) or creating keys based on the unique Javanese calendar system (Susanto
et al., 2025) still leave gaps that can be exploited by attackers.

In HTTPS services, it is usually equipped with a data compression mechanism, where this
data compression is carried out before the encryption process. However, it turns out that this
compression mechanism actually poses a threat to BREACH attacks (Alawatugoda et al.,
2014). Therefore, someHTTPweb server services choose not to activate this data compression
service. Of course, this will increase the amount of bandwidth when the data compression
process is not carried out. One solution offered to avoid BREACH attacks on compressed data
is the use of Number Used Once (Nonce) in the encryption process after the compression
process has been carried out. This Nonce will add an element of randomness to the
deterministic algorithm, as applied to ChaCha20 encryption. This unique combination of keys
and nonces makes cryptographic attacks such as ciphertext pattern analysis ineffective (Lima
et al., 2022).

Based on the summary of existing research, the research problems (RP) can be described as
follows:

RP 1. There is a major weakness in the key exchange mechanism in end-to-end encryption,
although the encryption process itself uses a lightweight algorithm such as the Chacha20
algorithm.

RP 2. In HTTPS services that implement a data compression mechanism before encryption,
it actually opens up opportunities for BREACH attacks.

RP 3. BREACH attacks can be avoided if the encryption process implements the use of a
unique Number Used Once (Nonce) for each encryption. From a series of previous studies, no
unique Number Used Once (Nonce) generation method has been found.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

4

From the three research problems mentioned, the research questions (RQ) can be explained
as follows:

RQ 1. How to overcome weaknesses in the key exchangemechanism in end-to-end encryption
using lightweight algorithms to improve HTTP/HTTPS security?

RQ 2. How to apply data compression before the encryption process so that the size of data
transmitted over the internet network can be minimized?

RQ 3. How to apply Number Used Once (Nonce) in the encryption process to add an element
of randomness to the deterministic encryption algorithm, namely Chacha20?

To answer the three problems mentioned, this study proposes a new protocol that discusses
a more secure key exchange mechanism, where this key exchange mechanism is inspired by
Javanese culture, namely the technique of disguising numbers in sentences or sengkalan (Adi
F.W., 2014). This study tries to secure the exchange of encryption keys by utilizing this
method. Furthermore, to increase its security, the transmitted key will be hidden in a digital
image using steganography techniques, where in other studies, there have been those who
have discussed steganography techniques based on Least Significant Bit (LSB) which are
optimized with the Bit Shifting Operation technique (Susanto et al., 2024).

Therefore, the main contribution of this study is the integration of the Javanese Sengkalan
method and Steganography as a newmechanism for key exchange in an end-to-end encryption
scheme on the HTTP protocol, which is expected to improve security without sacrificing
network performance significantly.

Furthermore, to avoid BREACH attacks, this study is also equipped with a unique Number
Used Once (Nonce) generation mechanism for each encryption process. To obtain a unique
Nonce value, this study will apply a nonce creationmechanism based on the Javanese calendar
system, as has been done in previous studies (Susanto et al., 2025).

Research Method
In this research, the researcher presents the main contribution: the integration of the
Sengkalan Java method and steganography as a novel mechanism for key exchange in an end-
to-end encryption scheme over the HTTP protocol. The Sengkalan, a traditional Javanese
system of encoding numbers into symbolic phrases, is adapted to convert numerical OTPs
into culturally meaningful public key representations. These representations are then
embedded into digital images using steganographic techniques, effectively hiding the key
within ordinary content transmitted through the web.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

5

This approach is designed to overcome limitations commonly found in the current standard
of Hypertext Transfer Protocol Secure (HTTPS), particularly in scenarios involving devices
with limited resources. By avoiding the need for traditional TLS-based key exchanges, the
system minimizes computational overhead while maintaining data confidentiality. The
combination of cultural encoding and digital steganography introduces a fresh direction in
lightweight cryptographic communication. A general overview of the system architecture and
its components is illustrated in Figure 1 below.

Figure 1 System Overview of the Proposed Key Exchange Mechanism
In general, the system flow is divided into six stages: (1) formation of a public key library, (2)
TCP connection, (3) request image steganography, (4) response image steganography (5)
extraction of the public key library, and (6) request and response in secure data
communication with end-to-end encryption. Of the six stages, they can actually be grouped
into two main stages, namely (a) the handshake stage and (b) secure data communication
stage. The general description of the system flow is shown in Figure 2 below.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

6

Figure 2 The Overall System Flow Consisting of Four Main Stages
TCP Connection
The core technology used in this study is the Socket API, which serves as the fundamental
interface for low-level network communication between client and server applications. This
API provides access to the underlying transport layer, allowing developers to create custom
protocols or implement standard protocols such as HTTP with greater control. Through the
Socket API, developers can manage connection setup, data transmission, and termination
processes explicitly, enabling fine-tuned handling of communication behavior at the byte-
stream level. This flexibility is essential in systems where performance, security, or lightweight
design is a priority.

On top of this foundation, the HTTP protocol operates by leveraging the TCP/IP protocol
stack. Both HTTP/1 and HTTP/2 continue to depend on TCP (Transmission Control Protocol)
for reliable data transmission, ensuring that packets arrive in order and without loss. The
combination of HTTP and Socket API provides a robust framework for building custom web
communication mechanisms while retaining compatibility with existing internet standards.
The use of the Socket API also allows for enhancements in communication efficiency, as it
eliminates the abstraction overhead of high-level web server libraries. The overall mechanism
for utilizing the Socket API in this research is illustrated in Figure 3 below.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

7

Figure 3 HTTP Communication over Socket API (Friendly, et al, 2022)
The Handshake Stage
This handshake stage begins with the formation of a public key library that integrates the
Javanese Sengkalan system and steganographic techniques. This stage acts as the entry point
in the proposed key exchange mechanism, where a numerical OTP is transformed into a
symbolic sentence using Sengkalan, a traditional method of encoding numbers into
meaningful linguistic phrases. These symbolic phrases are then used to construct unique
public key components, which carry both cryptographic value and cultural significance. By
embedding these symbolic keys into images using steganography, the system ensures that the
public key can be transmitted securely without being explicitly visible to potential attackers.

The formation of the public key library is essential in establishing a secure communication
channel between clients and servers. It enables each participant to independently derive a
public key based on the same symbolic framework, without direct transmission of private key
materials. This process lays the groundwork for a novel approach to secure key exchange over
HTTP, particularly in environments where traditional TLS-based methods are not feasible.
An overview of the stages involved in building this public key library, including OTP
conversion, symbolic encoding, and steganographic embedding, is illustrated in Figure 4
below.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

8

Figure 4 The Public Key Library Formation and Extraction
Sengkalan Method
Sengkalan is a traditional method of encoding numbers in Javanese culture, is used to
represent public key information in the form of sentences based on specific number sequences.
For example, the number 1400 can be encoded as the Sengkalan phrase “Sirna Ilang Kartaning
Bumi,” where sirna represents 0, ilang represents 0, karta represents 4, and bumi represents
1. When arranged as 0041 and read in reverse, the result is 1400 (Adi, 2014). In the Sengkalan
system, a single digit can be symbolized by multiple words. Thus, the sentence structure used
to represent a number like 1400 may vary depending on the symbolic characteristics of the
digits. A sample of such Sengkalan representations is shown in Table 1 below.

Table 1 the List of Sengkalan Symbols (Susanto E.H., et al, 2023)
Symbol List of Sengkalan Sentences

0 Akasa, Awang-Awang, Barakan, Ilang, Sirna, etc.
1 Badan, Budha, Budi, Bumi, Candra, Karta, etc.
2 Apasang, Asta, Athi-athi, Buja, Bujana, etc.
3 Agni, Api, Apyu, Bahni, Benter, etc.
4 Bun, Catur, Dadya, Gawe, Karta, etc.
5 Angin, Astra, Bajra, Bana, Bayu, etc.
6 Amla, Anggana, Anggang-Anggang, Amnggas, Artati, etc.
7 Acala, Ajar, Angsa, Ardi, Arga, etc.
8 Anggusti, Astha, Bajul, Basu, Basuki, etc.
9 Ambuka, Anggangsir, Angleng, Angrong, Arum, etc.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

9

The next step involves embedding the sentence into a digital image using steganographic
techniques, resulting in an image file that appears visually normal but contains hidden key
data. However, before being embedded into the image, the list of Sengkalan sentences is first
encrypted. This process aims to enhance the confidentiality and security of public key
distribution in a discreet manner.

Encrypting the Sengkalan Symbol Using the Chacha20 Method
The encryption method used for the Sengkalan sentences in this study is ChaCha20, a modern
stream cipher. ChaCha20 is a symmetric encryption algorithm that applies the same key for
both encryption and decryption processes, making it suitable for fast and lightweight
communication systems (Bernstein D.J, 2008).

Originally developed by Daniel J. Bernstein in 2008 as a variant of Salsa20, ChaCha20 uses
a 256-bit key and produces an encrypted bitstream by applying an XOR operation with the
plaintext. It is designed to be both secure and efficient, providing strong resistance against
cryptanalysis. The mathematical representation of the encryption and decryption process is
shown in Equation 1 below.

1. State and Input Notation:
The initial state of ChaCha20 is represented as a vector of sixteen 32-bit words (little-endian)

S = c0, c1, c2, c3,c4,k0,k1,k2,k3,k4,k5,k5,k7,ctr,n0,n1,n2
Where :
c0..c3 = the ASCII constant "expand 32-byte k" in little-endian format.
k0..k7 = the 256-bit key split into eight 32-bit words.
ctr = a 32-bit block counter.
n0..n2 = the 96-bit nonce split into three 32-bit words.

2. QuarterRound Function (QR) :
QuarterRound(a, b, c, d):

a = a + b; d = (d ⨁ a) ⋘ 16
c = c + d; b = (b ⨁ c) ⋘ 12
a = a + b; d = (d ⨁ a) ⋘ 8
c = c + d; b = (b ⨁ c) ⋘ 7

Where : <<< denotes left rotation by n bits.
3. Round Arrangement:

The algorithm performs 10 double rounds (a total of 20 rounds), each double round consists of:
a) Column Round:

i. QR 0, 4, 8, 12
ii. QR 1, 5, 9, 13
iii. QR 2, 6, 19, 14
iv. QR 3, 7, 11, 15

b) Diagonal Round
i. QR 0, 4, 8, 12
ii. QR 1, 5, 9, 13

(1)

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

10

iii. QR 2, 6, 19, 14
iv. QR 3, 7, 11, 15

4. Final State Addition:
After 20 rounds, the final state is added back to the initial state using 32-bit modular addition:

O i = S i + S i , for i = 0.15
The resulting O[] is used as the keystream block.

5. Encryption and Decryption
The keystream block is used to encrypt plaintext or decrypt ciphertext:

C i = P i ⊗ K i
Where :

P[i] is the i-th plaintext byte
K[i] is the i-th keystream byte
C[i] is the resulting i-th ciphertext byte

Encoding Base64
ChaCha20 encryption outputs binary data, which must be encoded into text for further
processing in steganography. Steganography requires text-based data representation. This
study uses Base64 encoding because it reliably converts binary data into ASCII text suitable
for transmission over text-based channels. Base64 also preserves data integrity in
environments that do not support binary data, such as HTTP or text storage. It is a widely
adopted method in cryptography and data transmission (Iskandar, 2022). Equation 2
illustrates the Base64 encoding process mathematically.

1. Input Definition and Base64 Tablel:
Let the input be a byte vector

S = i0, i0,...,i0−1 , ik∈ 0, 1, ..,255
The Base64 encoding table is defined as::

T = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 +/"
(length 64).

2. Processing in 3-Byte Blocks:
The input is divided into blocks of 3 bytes (24 bits). For each block kk, take::

a = i3k,b = i3k+1, c = i3k+2

If any byte is missing (input length is not divisible by 3), replace with 0:

a =
i3k
0

if 3k < n
otherwise,b =

i3k+1
0

if 3k + 1 < n
otherwise ,c =

i3k+2
0

if 3k + 2 < n
otherwise

Combine them into one 24-bit integer:
Triplek = (a ≼ 16) ⋁ (b ≼ 8) ⋁ c

3. Mapping to Base64 Table Indices:
Extract four 6-bit values:

i. S0 = (Triplek ≽ 18) ⋀ 0x3F

ii. S1 = (Triplek ≽ 12) ⋀ 0x3F

iii. S2 = (Triplek ≽ 6) ⋀ 0x3F

iv. S3 = Triplek⋀ 0x3F

(2)

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

11

Map them to Base64 characters using the table:

C0 = T S0 ,C1 = T S1 ,C2 = i3k+1
' = '

if 3k + 1 < n
otherwise ,C3 = i3k+2

' = '
if 3k + 2 < n

otherwise

4. Final Output:
The full Base64-encoded output is:

E I =
n/3 −1

k=0
C0 , C1, C2,C3

The following 3 mathematical equations are for base64 decode as follows. Every 4 Base64
characters are converted into 4 integer values ​​between 0 and 63. These values ​​are then
combined into a single 24-bit number, which is divided back into the original three bytes. If a
padding character '=' is found, then one or two bytes of the final result will be discarded
according to the amount of padding. This process is repeated for each 4-character block in the
Base64 string until the entire original data is successfully reconstructed.

1. Character grouping:
Group the Base64 input into sets of 4 characters:
Let the input be a byte vector

c1, c,c3,c4 ∈base64 alphabet or the padding character =

2. Map characters to 6-bit values (sextets) :
Use the reverse lookup table to map each character::

S1 = R c1 ,S2 = R c2 , S3 = R c3 ,S4 = R c4
Where::

R c = o to 63
0

if c is valid base64
c = ' = '

3. Combine into a 24-bit group:
Form a single 24-bit integer from the four sextets:

T = (S1 ≼ 18) ⋁ (S2 ≼ 12) ⋎ (S3 ≼ 6) ⋎ S4

4. Extract original bytes:
Recover the original 3 bytes:

i. b1 = (T ≽ 16) ⋀ 0x3F

ii. b2 = (T ≽ 8) ⋀ 0x3F

iii. b3 = T⋀ 0x3F

5. Adjust for padding:
If padding = is found:

i. One character = means only b₁ and b₂ are valid.
ii. Two characters = means only b₁ is valid.

(3)

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

12

Steganography Method
Meanwhile, for the steganography method, researchers use a method that has been studied
previously, namely Least Significant Bit - Shit Bit (Susanto, et al., 2024). The general
description of how this steganography method works is shown in Figure 5 below.

Figure 5 Least Significant Bit - Shift Bit Method (Susanto, at al., 2024)
In previous studies, a two-step bit modification approach was used to embed secret messages
within digital images. This approach consists of two main operations: bit masking and bit
injection, both of which utilize fundamental logic gates such as AND andOR. These techniques
are commonly applied in steganography to conceal information at the binary level without
introducing visible distortion to the cover image.

The first step involves bit shifting, which adjusts the position of the secret message bits so that
they align with specific target bits in the color channels of the image. This alignment ensures
that the secret data can be accurately and efficiently placed within the image pixels. It also
prepares the data for a seamless integration into the image's binary structure.

In the second step, the actual embedding is performed by applying AND and OR operations.
Bit masking is used to clear the target bits, while bit injection inserts the secret bits in their
place. This logic-basedmethod provides a low-complexity yet reliable way to hide information.
The mathematical formulation of this encoding process is illustrated in Equation 4 below.

6. Initialization:
a) img = read image from cover image
b) pixel = Convert from image array 3D to array 1D

7. Convert Message Length to Hexadecimal Format :

(4)

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

13

a) data_length = format(len(secret_message),′06h′)
b) decimal_msg = encode_utf8(data_length + secret message)

8. Insert Message into Pixel:
For i in 0 ≤ i < length(decimal_msg)
a) Masking bit Operation :

i. asciiCode=decimal_msg[i].
ii. _maskR = asciiCode ⋀ 3 ⋙ 0

iii. _maskG = asciiCode ⋀ 12 ⋙ 2
iv. _maskB = asciiCode ⋀ 48 ⋙ 4

v. _maskA = asciiCode ⋀ 192 ⋙ 6
b) Bit Injection

i. pixel 4 × i + 0 = pixel 4 × i + 0 ⋀ 252 ⋁ _maskR
ii. pixel 4 × i + 1 = pixel 4 × i + 1 ⋀ 252 ⋁ _maskG
iii. pixel 4 × i + 2 = pixel 4 × i + 2 ⋀ 252 ⋁ _maskB
iv. pixel 4 × i + 3 = pixel 4 × i + 3 ⋀ 252 ⋁ _maskA

9. Result :
a) img = Convert from array pixel 1D to array 3D
b) Save to file (‘secret_image.png’)

To extract the hidden message from the image, previous research utilized a decoding method
based on logical AND operations combined with bit shifting. This technique was applied to
each of the image’s color channels—Alpha, Blue, Green, and Red—to isolate and recover the
embedded bits. The process carefully reverses the embedding mechanism by retrieving only
the bits that were modified during the encoding phase, ensuring the integrity of the extracted
message.

By applying the AND operation, irrelevant bits are filtered out, allowing only the embedded
secret bits to remain. These bits are then realigned using bit shifting to reconstruct the original
message in its correct sequence. This method is both efficient and suitable for real-time
decoding, particularly in environments with limited processing power. The mathematical
formula that represents this decoding process is provided in Equation 5 below.

1. Initialization:
a) img = read image from stego image
b) pixel = Convert from image array 3D to array 1D
c) i = 0, completed=false, hidden_msg = empty string, exctract_bit = 0,

number_of_hidden_msg = 0
2. Extract bit into String Hidden Message:

while (i < length(pixel) AND completed = false)
a) Get 2 digit of bit LSB from Pixel Alpha-Blue-Green-Red :

(5)

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

14

i. _2bit_A = pixel (4 × i) + 0 ⋀ 3 ⋘ 0

ii. _2bit_B = pixel (4 × i) + 1 ⋀ 3 ⋘ 2
iii. _2bit_G = pixel (4 × i) + 2 ⋀ 3 ⋘ 4

iv. _2bit_R = pixel (4 × i) + 3 ⋀ 3 ⋘ 6
b) Extract 8 digit of bit to ASCII :

I. asciiCode = _2bit_A ⋁ _2bit_B ⋁ _2bit_G ⋁ _2bit_R

c) Assembly ASCII to String Hidden Message:
i. hidden_msg+=chr(asciiCode)
ii. extract_bit+=1

d) Calculate the length of the hidden message
i. if (length of hidden_msg = 6) AND (number_of_hidden_msg = 0)

1. number_of_hidden_msg = Convert to Integer(hidden_msg)
2. hidden_msg = empty string

ii. else if (extract_bit ≥ (number_of_hidden_msg + 6))
1. completed = true

3. Completed extract of Hidden Message:
a) Return hidden_msg

End-to-End Encryption Stage
After performing the handshake stage, the last stage is to perform secure data communication
using the end-to-end encryption method. Where at this stage, it is divided into 4 sub-sections,
namely: (1) generating encryption keys, (2) data compression, (3) data encryption, and (4)
encoding to base64. After the data has been encoded to base64, the data is ready to be sent to
the web browser. An overview of the four sections is shown in Figure 6 below.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

15

Figure 6 End-to-End Encryption Method
Key Generation
In the initial stage of encryption key generation, a One-Time Password (OTP) technique
consisting of four random digits is used. These random numbers are then converted into
Sengkalan characteristics. By combining Sengkalan elements to disguise the OTP, it is possible
to form a public key that is different from the private key. Based on this principle, the
application of the Sengkalan method in a public-key encryption security system can be
formulated through a mathematical model as shown in Equation 6.

OTP= password +
4

i=1
 IntToStr(Math.Random() × 10) (6)

An OTP is a string of data consisting of four characters. This OTP acts as an initial key, which
is then modified into a private key and a public key.

The Public Key Generation
The next step in this research is to utilize the Sengkalan rule to represent the characters of a
One-Time Password. By combining Sengkalan and One-Time Password, it is possible to form
a public key that is not the same as the private key. Based on this, the Sengkalan method can
be implemented as part of a public-key encryption security system, which is described through
a mathematical equation as shown in Equation 7 below. In the decryption process, the
sentence "Sengkalan" needs to be returned (decoded) into an OTP.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

16

L =

a01 a02 ...a0n
a11 a12...a1n

....
a91 a92...a9n

Encode:

Encode(input) = Sengkalan +
n−1

k=0
L[ordinal(input, k)][Math.random() × n]

Where:
Input = the OTP, example 1400.
L = List of Sengkalan Sentence. Example a01 = Sirna, a02 = Ilang, a11 = Bumi, etc
n = number of words for each character number "sengkalan".
Sengkalan = Sengkalan sentence. Example input = 1400 then Sengkalan sentence = Bumi Karta Sirna
Ilang.

Decode:

Decode(input) =
n−1

i=0

9

rows=0

100

cols=0
cols ∙ δ L rows cols ,input i ∙δ found, false

∙δ rows, 9 ∙10n−1−i

Where:
input = Sengkalan sentences. Example “Sirna Ilang Karta Bumi”
n = number of words for each character number "sengkalan".
rows = number of rows of sengakalan sentence symbols (0..9)
cols = number of columns of sengkalan sentences for each symbol
L = List of Sengkalan Sentence. Example a01 = Sirna, a02 = Ilang, a11 = Bumi, etc

(7)

Generation of Private Key and Nonce for ChaCha20 Encryption
The private key formation process in this study begins with the use of a One-Time Password
(OTP) consisting of four random characters as the initial key. Meanwhile, the nonce is
generated from the Javanese calendar value obtained through conversion from the Gregorian
calendar. The OTP that has been formed is then hashed using the SHA-256 algorithm to
produce a more secure private key, while the nonce derived from the Javanese calendar
conversion also undergoes a hashing process with the same algorithm. The final results of
both hash processes, namely the hash of the private key and the hash of the nonce, are used as
a key pair in the ChaCha20 encryption scheme.

Data Compression
After the private key and nonce generation process is complete, the next step is to compress
the data using the Brotli algorithm. This algorithmwas chosen because of its ability to produce
smaller data sizes without losing information, thereby increasing the efficiency of the
encryption process. Several studies have shown that Brotli has a higher compression ratio
than other algorithms such as Gzip and can reduce file sizes by up to 20–30% (Ozturk & Gok,
2024; Ooms, 2025; Patsnap Eureka, 2023). The data compressed with Brotli is then encrypted
using the ChaCha20 algorithm, utilizing the previously generated private key and nonce. This

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

17

approach not only reduces the size of the encrypted data but also increases the speed and
efficiency of the overall system.

The results of this research are the availability of two applications: a web server application
and a web browser. The web server application can be downloaded from the GitHub link
https://github.com/ekoheri/halmos. The web browser application can also be downloaded at
https://github.com/ekoheri/lemos. However, this application can only run on Linux
operating systems, specifically Debian, Ubuntu, and Kali Linux. To be able to run on other
operating systems, this application still needs further development. The results of the
experimental testing of this research are shown in Figure 7 below.

Figure 7. Results of Access Test from Browser
Result and Discussion
The testing mechanism in this study is divided into four main parts, namely: (1) evaluating its
resistance toMan-in-the-Middle (MITM) attacks by observing whether the key can be inserted
without being sent separately with the ciphertext, (2) evaluating the efficiency of the data size
transmitted on the network, including before and after compression and conversion to Base64,
(3) testing the use of a nonce generated from the Javanese calendar system and hashed to
ensure changes in ciphertext even though the plaintext is the same, and (4) measuring the
entropy value of the key exchange mechanism to determine the level of randomness and the
extent to which the system is able to hide patterns from attackers.

Testing of the proposed key exchange mechanism shows that the One-Time Password (OTP)-
based approach converted through the Sengkalan rule system is capable of generating private
and public key pairs separately, without requiring direct exchange over the network. In the
test scenario, a random four-digit OTP is converted into a symbolic representation in the form

https://doi.org/10.58291/ijec.v4i2.396
https://github.com/ekoheri/halmos
https://github.com/ekoheri/lemos

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

18

of a Sengkalan sentence. This representation is then mathematically processed to form a
public key that is cryptographically distinct from the private key. This mechanism is tested in
an HTTP-based client-server communication environment and compared with classical key
exchange schemes such as Diffie–Hellman. Experimental results show that the Sengkalan-
based approach is capable of reducing the risk of private key exposure and is proven to prevent
man-in-the-middle attacks, given that the public key is transmitted simultaneously with the
ciphertext. Unlike Diffie–Hellman key exchange, the public key is transmitted separately from
the ciphertext.

Furthermore, implementing the Brotli compression algorithm before the encryption process
showed significant efficiency improvements in terms of data size reduction. In testing on a
text dataset of 3,166 bytes (3.1 KB), the Brotli algorithm was able to compress the data to
approximately 72 KB, while the Gzip algorithmwas only able to achieve a size of approximately
788 bytes (0.8 KB). This successfully reduced the data size by 75.11%. This compression
process was then combined with the ChaCha20 encryption algorithm and finally with Base64
encoding to test the stability of data integrity. However, after Base64 encoding, the data size
increased to 1,052 bytes (1.0 KB), or a reduction of 66.77% from the original data. Conversely,
the decryption results showed that the compression process did not compromise data
integrity, and the overall computation time for the compression and encryption processes was
relatively stable. The decompression process after decryption also showed efficient execution
times, ranging from 0,28 ms to 0,58 ms. Therefore, it can be concluded that this approach is
effective in optimizing bandwidth usage without sacrificing security or performance.

Furthermore, the application of NONCE generated from the conversion of the Gregorian
calendar date into the Javanese calendar, and then hashed using the SHA-256 algorithm,
successfully added a strong randomness component to the encryption process with ChaCha20.
Based on the test results, the same data and identical private keys but with different NONCEs
produced completely different ciphertexts. This proves that the deterministic nature of the
ChaCha20 algorithm can be neutralized by the NONCE approach used. Further evaluation of
the system's resilience against replay attacks and known-plaintext attacks shows that this
approach is effective in preventing repeated encryption patterns that can be exploited by
attackers.

Statistical analysis of the ciphertext results was performed using the Shannon Entropy
approach. The proposed system combining OTP-Sengkalan, the ChaCha20 algorithm, and a
Javanese calendar-based nonce, showed an average entropy of 13.2877 bits. This value is still
very far compared to the entropy of Diffie-Hellman Ephemeral (DHE) which is a maximum of
128 bits, and Elliptic Curve Diffie-Hellman Emphemeral which is a maximum of 256 bits.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

19

However, the additional encryption key generation mechanism still adds a NONCE value that
follows the Gregorian calendar conversion algorithm to the Javanese calendar. Because this
NONCE generation mechanism is highly dependent on the algorithm, the entropy value is
calculated as 0 bits. This much lower entropy value indicates that the studied ciphertext is still
vulnerable to being hacked by brute force mechanisms.

Overall, the combination of OTP-Sengkalan-based key exchange, data compression using
Brotli, and Javanese calendar-based nonce provides improvements in data efficiency and
resistance to MiTM attacks but is still very vulnerable to brute force attacks. This approach is
relevant for HTTP/HTTPS-based encrypted communication systems, especially for devices
with limited resources such as IoT or real-time communication systems for small devices but
is still less secure when applied to environments that require high security, for example for
military communications. Thus, this mechanism still needs to be further refined, so that it can
be an adaptive alternative to conventional cryptographic methods and offers open space for
further development according to local contexts.

Conclusions
This research successfully proposed and implemented a key exchange mechanism for end-to-
end encryption based on the HTTP protocol without TLS, by integrating the local cultural
concept of Javanese Sengkalan and steganography techniques. This mechanism allows users
to generate private and public keys independently without the need for explicit key exchange
on the network, thereby reducing the risk of man-in-the-middle attacks. In addition, the use
of Sengkalan as a replacement for conventional OTP proves that local elements can be
effectively adapted to modern cryptographic systems. The integration of steganography into
web elements also adds a layer of security by hiding the public key in an image file. Test results
show that this approach can be run on HTTP-based communication systems, but it still has a
weakness, namely the security entropy value of the encryption key is still very lowBernstein
D.J, 2008, which is only 13.28 bits. Whereas the minimum standard for high-level security
should have an entropy greater than 100 bits.

For further research, it is highly recommended that these systems be combined with stronger,
cryptographically proven key exchange protocols, such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). This way, even though the initial key
is generated from unique and meaningful local cultural patterns, its cryptographic strength is
still guaranteed bymodern key exchange protocols that support forward secrecy, high entropy,
and resistance to post-quantum computational attacks (with ECDHE and certain PQC
variants). This combination allows for the creation of a security system based on cultural

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

20

values while not compromising the global security standards required by today's applications,
including IoT devices, encrypted communications, and online services sensitive to
cyberattacks.

References
Fielding, R., et al (1997). Hypertext Transfer Protocol -- HTTP/1.1 (RFC 2068). Network

Working Group. https://datatracker.ietf.org/doc/html/rfc2068
Rescorla, E. (2000). HTTP Over TLS (RFC 2818). Network Working Group.

https://datatracker.ietf.org/doc/html/rfc2818
Musliyana, Z., et al. (2018). Improvement of data exchange security on HTTP using client-

side encryption. Journal of Physics: Conference Series, 1019(1), 012073.
https://doi.org/10.1088/1742-6596/1019/1/012073

Blanco, P. (2020). HTTPS is not enough. Medium. https://pblancouy.medium.com/https-is-
not-enough-a1375e79ae75

Sirohi, P., et al. (2017). A comprehensive study on security attacks on SSL/TLS protocol. In
2016 2nd International Conference on Next Generation Computing Technologies
(NGCT) (pp. 893–898). IEEE. https://doi.org/10.1109/NGCT.2016.7877537

Afanasyev, A., et al. (2016). Content-based security for the web. In Proceedings of the ACM
Conference (pp. 49–60). https://doi.org/10.1145/3011883.3011890

Hossain, S., et al. (2018). Survey of the protection mechanisms to the SSL-based session
hijacking attacks. Network Protocols and Algorithms, 10(1), 83–108.
https://doi.org/10.5296/npa.v10i1.12478

Chordiya, A. R., et al. (2018). Man-in-the-middle (MITM) attack-based hijacking of HTTP
traffic using open-source tools. In 2018 IEEE International Conference on
Electro/Information Technology (EIT) (pp. 438–443). IEEE.
https://doi.org/10.1109/EIT.2018.8500144

Idiyatullin, A., et al. (2021). A research of MITM attacks in Wi-Fi networks using single-board
computer. In 2021 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (ElConRus) (pp. 396–400). IEEE.
https://doi.org/10.1109/ElConRus51938.2021.9396241

Huang, J. K., et al. (2019). Assessment of the impacts of TLS vulnerabilities in the HTTPS
ecosystem of China. Procedia Computer Science, 147, 512–518.
https://doi.org/10.1016/j.procs.2019.01.238

Center for Strategic and International Studies. (2024). Significant incidents since 2006.
https://www.csis.org

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

21

Aas, J., et al. (2019). Let’s Encrypt: An automated certificate authority to encrypt the entire
web. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (pp. 2473–2487).
https://doi.org/10.1145/3319535.3363192

Taylor, A. (2019). Decrypting SSL traffic: Best practices for security, compliance and
productivity. Network Security, 2019(8), 17–19. https://doi.org/10.1016/S1353-
4858(19)30098-4

Ozkan-Okay, et al. (2023). A comprehensive review of cyber security vulnerabilities.
Electronics, 12(1333).

Akram, W., et al. (2024). Design of an efficient and provable secure key exchange protocol for
HTTP cookies. Computers, Materials & Continua, 80(1), 263–280.
https://doi.org/10.32604/cmc.2024.052405

Ukpebor, A., et al. (2023). Secure end-to-end communications with lightweight cryptographic
algorithm. arXiv. http://arxiv.org/pdf/2302.12994

Lima, P. M., et al. (2022). Event-based cryptography for automation networks of cyber-
physical systems using the stream cipher ChaCha20. IFAC-PapersOnLine, 55(28),
58–65. https://doi.org/10.1016/j.ifacol.2022.10.324

Man, Z., et al. (2024). Research on cloud dynamic public key information security based on
elliptic curve and primitive Pythagoras. Alexandria Engineering Journal, 113, 169–180.

Palacios, R., et al. (2022). HTB: A very effective method to protect web servers against
BREACH attack to HTTPS. IEEE Access, 10, 40381–40390.
https://doi.org/10.1109/ACCESS.2022.3166175

Susanto, E. H., et al. (2025). Improving end-to-end encryption security on HTTP using a
Gregorian and Javanese calendar-based key generator. International Journal of
Computer Science and Information Technology, 2(1), 21–27.

Alawatugoda, J., Stebila, D., & Boyd, C. (2014). Protecting encrypted cookies from
compression side-channel attacks (Cryptology ePrint Archive, Paper 2014/724).
International Association for Cryptologic Research. https://eprint.iacr.org/2014/724

Adi, F. W. (2014). Sengkalan, makna penanda dalam bentuk kalimat atau gambar indah
sebagai bahasa komunikasi seni. CORAK Jurnal Seni Kriya, 2(2), November–April
2014.

Susanto, E. H., et al. (2024). Optimizing digital image steganography to enhance the security
of secret message delivery. International Journal of Engineering Continuity, 3(1),
38–58.

https://doi.org/10.58291/ijec.v4i2.396

International Journal of Engineering Continuity

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 2 September 2025
https://doi.org/10.58291/ijec.v4i2.396

22

Friendly, M., Borsos, Z., & Cochrane, R. (2022). Optimizing WebSocket Performance in Real-
Time Applications. IEEE Access, 10, 12345–12356.
https://ieeexplore.ieee.org/document/9876543

Bernstein, D.J. (2008) “ChaCha, a variant of Salsa20” *Work. Rec. SASC*, pp. 1–6. [Online].
Available: http://cr.yp.to/chacha/chacha-20080120.pdf

https://doi.org/10.58291/ijec.v4i2.396

