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Abstract: Efficient water management in agriculture is crucial due to dynamic environmental 

conditions and increasing resource scarcity. Fuzzy Inference System (FIS) is widely applied in 

irrigation control for its ability to handle uncertaintys using rule-based domain knowledge. 

However, conventional FIS lacks adaptability to environmental changes, limiting its long-term 

accuracy and responsiveness. Adaptive Neuro-Fuzzy Inference System (ANFIS) addresses this 

limitation by combining fuzzy logic with neural network learning, enabling automatic 

adjustment of model parameters based on data patterns. This study compares the performance 

of FIS and ANFIS in predicting optimal irrigation levels based on soil moisture, air temperature, 

relative humidity, and solar radiation. A synthetic dataset of 1,000 samples simulating realistic 

agricultural conditions was generated and normalized to improve computational consistency. 



 

International Journal of Engineering Continuity 
 

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 1 March 2025 
 https://doi.org/10.58291/ijec.v4i1.399 211 

 

The FIS model uses triangular membership functions and five expert-defined fuzzy rules, while 

ANFIS employs Gaussian membership functions with parameters optimized using the ADAM 

algorithm over 50 training epochs. Results show that ANFIS outperforms FIS, lowering RMSE 

from 0.13 to 0.07, halving MAE from 0.10 to 0.05, and increasing R² from 0.85 to 0.93, 

indicating a substantially better predictive performance. This study demonstrates that ANFIS 

is more adaptive, accurate, and computationally efficient, contributing to the advancement of 

intelligent and sustainable irrigation systems in precision agriculture.  

Keywords: FIS, ANFIS, agricultural irrigation, optimization, intelligent systems. 

Introduction  

Efficient water resource management in agriculture is becoming increasingly critical due to 

climate change, population growth, and limited freshwater availability. The agricultural sector 

is a key component of national food security, where irrigation systems play a central role in 

maintaining productivity and ensuring crop yield stability. However, traditional irrigation 

systems often operate on fixed schedules or rely on manual control, making them unable to 

adapt to the dynamic nature of environmental conditions, such as fluctuating rainfall, 

temperature variations, and soil moisture changes(Nur Hidayat; Tyasmoro, 2024; Oğuztürk, 

2025; Pambudi, 2021; Rusmayadi et al., 2023; Setiani et al., 2021). This results in either 

excessive water usage or inadequate water supply to crops, leading to resource wastage and 

potential crop failure (Basri, 2022; Daru et al., 2021; Jupri Berutu et al., 2022; Marsujitullah 

& Lamalewa, 2020; Saragih, 2023; Saskia Eka Cahyani et al., 2023). Therefore, it is imperative 

to develop intelligent irrigation systems that can dynamically adjust water distribution based 

on real-time environmental factors. 

The integration of Artificial Intelligence (AI) technologies into precision agriculture has 

emerged as a transformative solution to address these challenges. AI methodologies have 

evolved significantly, from basic rule-based systems to sophisticated machine learning (ML) 

and deep learning (DL) models (Mustaza et al., 2025). Among AI techniques, the Fuzzy 

Inference System (FIS) represents a fundamental approach, widely applied due to its inherent 

capability to handle uncertainty and imprecision commonly found in agricultural data. FIS 

leverages human expert knowledge encoded in fuzzy rules to make decisions under uncertain 

conditions. In the context of irrigation control, FIS has been utilized to manage water supply 

efficiently by modeling the non-linear relationships between environmental variables and 

irrigation needs (E. M. J. Hoque et al., 2023). 

Nevertheless, conventional FIS models typically rely on static membership functions and 

predefined fuzzy rules that do not change in response to evolving environmental conditions 

https://doi.org/10.58291/ijec.v4i1.399
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(Tyokighir et al., 2024). This static nature limits the adaptability and scalability of FIS-based 

irrigation systems, especially in real-world agricultural environments characterized by 

continuous variability and complexity. The inability of FIS to self-adjust its parameters based 

on new data inputs hinders its long-term effectiveness in precision irrigation management. 

To address these limitations, researchers have introduced the Adaptive Neuro-Fuzzy Inference 

System (ANFIS), which integrates the interpretability of fuzzy logic with the learning 

capability of artificial neural networks (Jang, 1993). ANFIS enhances the traditional fuzzy 

system by enabling automatic tuning of membership functions and optimization of rule 

parameters through data-driven learning processes (Rajagopal et al., 2022). This hybrid 

approach facilitates the development of more responsive and accurate models capable of 

capturing complex, non-linear relationships between environmental factors and irrigation 

requirements. ANFIS has demonstrated significant potential in various agricultural 

applications, such as predicting evapotranspiration rates and estimating crop water needs 

more accurately than conventional FIS (Borse et al., 2025). 

Despite these advancements, the literature reveals a noticeable gap concerning direct 

comparative analyses between FIS and ANFIS within the domain of irrigation control. Many 

existing studies predominantly focus on either developing FIS-based systems or implementing 

ANFIS models without systematically evaluating their comparative strengths and weaknesses 

(A. K. Singh et al., 2022a). Additionally, previous research often overlooks important practical 

aspects such as computational efficiency, model interpretability, and visualization of model 

outputs, including response surfaces and error distributions. These aspects are crucial for 

practical deployment and decision-making support in smart irrigation systems. 

This research seeks to address these gaps by conducting a comprehensive comparative 

analysis of FIS and ANFIS for intelligent irrigation control. A synthetic dataset simulating 

realistic agricultural conditions was generated, encompassing four key environmental 

parameters: soil moisture, air temperature, relative humidity, and solar radiation. The use of 

synthetic data ensures controlled experimentation while simulating diverse agricultural 

scenarios. For the FIS model, triangular membership functions were employed alongside five 

expert-defined fuzzy rules, encapsulating domain-specific knowledge from agricultural 

practitioners. Conversely, the ANFIS model utilized Gaussian membership functions, with 

their parameters optimized through the Adam optimization algorithm over multiple training 

epochs to ensure convergence and stability. 

To rigorously evaluate the models, multiple performance metrics were adopted, including 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of 

determination (R²), providing a comprehensive assessment of prediction accuracy and model 

https://doi.org/10.58291/ijec.v4i1.399
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reliability. Moreover, execution time analysis was conducted to compare the computational 

efficiency of both models, offering insights into their suitability for real-time applications. 

Visual tools, including error distribution histograms, actual versus predicted scatter plots, and 

three-dimensional response surface visualizations, were employed to facilitate model 

interpretation and comparative analysis. 

By systematically comparing FIS and ANFIS across multiple dimensions—accuracy, 

adaptability, computational efficiency, and interpretability—this study aims to provide 

valuable insights that support the design and development of more effective intelligent 

irrigation systems. The findings are anticipated to inform agricultural engineers, practitioners, 

and researchers working in precision agriculture and smart farming technologies, 

contributing to the broader adoption of adaptive AI-driven irrigation management solutions. 

The primary objective of this research is to implement and evaluate FIS and ANFIS models for 

irrigation control, analyze their comparative performance based on standardized evaluation 

criteria, and determine the advantages of using ANFIS over conventional FIS in terms of 

adaptability, prediction accuracy, and computational performance. Ultimately, this research 

aspires to advance the development of intelligent, efficient, and sustainable irrigation systems 

that can support the evolving needs of modern agriculture. 

Research Method 

This study implements and compares two fuzzy logic-based approaches for agricultural 

irrigation control systems. The problem addressed in this study is the prediction of the optimal 

irrigation level based on four key environmental parameters: soil moisture, air temperature, 

air humidity, and solar radiation. Mathematically, the input vector is represented by the 

following Equation (1). 

 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] (1) 

Where 𝑥1 is the soil moisture (%), 𝑥2 is the temperature ( ∘C), 𝑥3 is the air humidity (%) and 

𝑥4 is the solar radiation (W/m2). The objective is to determine the optimal function that can 

be represented by following Equation (2). 

 𝑓: 𝑥 → 𝑦 (2) 

here 𝑦 is the optimal irrigation level (liters per minute). The function is optimized to minimize 

prediction error, evaluated using RMSE as the following Equation (3). 

https://doi.org/10.58291/ijec.v4i1.399
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 RMSE = √
1

𝑛
∑ 

𝑛

𝑖=1

  (𝑦𝑖 − �̂�𝑖)
2 (3) 

Where 𝑦𝑖 is the actual irrigation value, �̂�𝑖 is the predicted value, and 𝑛 is the number of data 

samples (Puspaningrum et al., 2021; Rajagopal et al., 2022; A. K. Singh et al., 2022a). 

Data Collection and Processing 

A synthetic dataset was generated to simulate realistic agricultural environmental conditions. 

The dataset consists of 1,000 samples generated using a uniform distribution within the 

following realistic parameter ranges: Soil moisture ranges from 10% to 80%, Temperature: 

ranges from 20∘C to 40∘C,  air humidity ranges from 40% to 90% and solar radiation ranges 

from 200 to 800 W/m2. These parameter ranges were intentionally selected to reflect typical 

field conditions reported in agriculture. For instance, a soil moisture of 10% represents very 

dry soil (near a crop’s wilting point), whereas 80% reflects a nearly saturated soil profile; 

likewise, a temperature range of 20–40 °C covers moderate to hot daytime conditions 

common in many farming areas, relative humidity from 40% to 90% spans dry midday air to 

humid morning air, and solar radiation from 200 to 800 W/m² corresponds to overcast or 

low-angle sun up to nearly full midday sunlight. By using such realistic bounds, the synthetic 

data simulates a broad spectrum of plausible environmental scenarios, ensuring the models 

are trained on data that could actually occur in practice. This approach to synthetic data 

generation is also consistent with previous studies that span inputs across their full normal 

ranges to emulate real-world variability (Lakhiar et al., 2024; Vallejo-Gómez et al., 2023). The 

following Equation (4) representing the optimal irrigation level that computed using a 

nonlinear function. 

 𝑦 = max(0,50 − 0.5∗𝑥1 + 0.3∗𝑥2 − 0.2∗𝑥3 + 𝑥4/100) (4) 

The dataset was then normalized to the [ 0,1 ] range using MinMaxScaler from the scikit-learn 

library. Normalization was performed using the following Equation (5). 

 𝑥 norm = (𝑥 − 𝑥min)/(𝑥max − 𝑥min) (5) 

This ensures consistent scaling across all input variables before processing with FIS and 

ANFIS models. The dataset was split into 80% for training and 20% for testing using stratified 

random sampling to maintain balanced data distribution (J. Singh, 2023). 

https://doi.org/10.58291/ijec.v4i1.399
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Fuzzy Inference System (FIS) Implementation 

The first control model was developed using the Mamdani-type FIS. The architecture of the 

implemented FIS is illustrated in Figure 1.  

 

Figure 1 Implemented FIS Architecture 

FIS Membership Functions 

The system implements a homogeneous set of three triangular membership functions (MFs) 

across all normalized input domains (soil moisture 𝑥1, temperature 𝑥2, humidity 𝑥3 and solar 

radiation 𝑥4) and the output irrigation level 𝑦. Triangular membership functions are selected 

due to their simplicity, ease of implementation, and interpretability. Their linear form makes 

them computationally efficient and ideal for expert-driven systems like the FIS, where 

transparency and low complexity are beneficial. Each MF is represented by the following 

Equations (6).  

For the Low membership function ( 𝑎 = 0, 𝑏 = 0, 𝑐 = 0.5 ): 

 𝑥𝜇Low (𝑥) =

{
 
 

 
 
0  if 𝑥 ≤ 0
𝑥

0.5
 if 0 < 𝑥 ≤ 0.5

0.5 − 𝑥

0.5
 if 0.5 < 𝑥 ≤ 0.5  (always 0) 

0  if 𝑥 > 0.5

 (6) 

Then, the Equation (7) simplifies to left-triangular function: 

 𝜇Low (𝑥) = max(0,1 − 2|𝑥 − 0|)  for 𝑥 ∈ [0,0.5] (7) 

For the Medium membership function ( 𝑎 = 0, 𝑏 = 0.5, 𝑐 = 1 ) with symmetric triangular peak 

at 𝑥 = 0.5 can be described by the following Equation (8). 

https://doi.org/10.58291/ijec.v4i1.399
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 𝜇Medium (𝑥) = {

0  if 𝑥 ≤ 0
2𝑥  if 0 < 𝑥 ≤ 0.5
2(1 − 𝑥)  if 0.5 < 𝑥 ≤ 1

0  if 𝑥 > 1

 (8) 

And the High membership function ( 𝑎 = 0.5, 𝑏 = 1, 𝑐 = 1 ) represented by Equation (9). 

 
𝜇High (𝑥) = {

0  if 𝑥 ≤ 0.5
2(𝑥 − 0.5)  if 0.5 < 𝑥 ≤ 1

0  if 𝑥 > 1

 
(9) 

The uniform FIS MFs architecture is adopted based on several theoretically grounded 

considerations. First, to ensure normalization compatibility, all input variables undergo min-

max normalization to [0,1], enabling consistent MFs application regardless of their original 

measurement scales. This approach prevents dominance by variables with larger native ranges 

(e.g., solar radiation spanning 200-800 W/m² versus relative humidity ranging 40-90%) 

while maintaining linguistic interpretability. Secondly, from a computational efficiency 

perspective, the design yields significant advantages. Finaly, the last consideration is the rule-

based specialization, variable-specific behaviors emerge through the weighted rule base rather 

than MFs differentiation. Analysis of rule activations reveals that soil moisture accounts for 

72% of mean rule activation weights, solar radiation provides secondary modulation (±15% 

output adjustment), while temperature and humidity serve as complementary constraints. 

FIS Rules 

The following five FIS rules are designed based on agronomic principles and computational 

efficiency considerations. These five rules are are developed using expert agronomic reasoning 

and supported by prior studies. Soil moisture, air temperature, solar radiation, and relative 

humidity were selected as key input variables because of their direct influence on crop 

evapotranspiration and water demand (M. D. J. Hoque et al., 2023). Specifically, soil moisture 

is the primary indicator of irrigation need—low moisture demands a high irrigation output, 

while high moisture suppresses the need. Air temperature and solar radiation are incorporated 

because they elevate plant water use under hot and bright conditions, whereas high humidity 

reduces evaporation and thus water demand. Each fuzzy rule was constructed to mirror these 

patterns: for instance, high irrigation is triggered when soil moisture is low and temperature 

is high, and low irrigation is applied under high soil moisture or cool, humid conditions. This 

compact, agronomy-informed rule base aligns with frameworks found in prior fuzzy logic 

irrigation models that emphasize simplicity and high relevance (M. D. J. Hoque et al., 2023). 

By encoding these evident environmental-to-water relationships, the FIS ensures decision-

making that is both transparent and grounded in practical crop water management logic. 

https://doi.org/10.58291/ijec.v4i1.399


 

International Journal of Engineering Continuity 
 

International Journal of Engineering Continuity, ISSN 2963-2390, Volume 4 Number 1 March 2025 
 https://doi.org/10.58291/ijec.v4i1.399 217 

 

1. 𝐼𝐹 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑖𝑠 𝐿𝑜𝑤 𝑂𝑅 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐻𝑖𝑔ℎ, 𝑇𝐻𝐸𝑁 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑀𝑒𝑑𝑖𝑢𝑚. 

2. 𝐼𝐹 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑖𝑠 𝑀𝑒𝑑𝑖𝑢𝑚 𝐴𝑁𝐷 𝑎𝑖𝑟 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 𝑖𝑠 𝐿𝑜𝑤, 𝑇𝐻𝐸𝑁 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑀𝑒𝑑𝑖𝑢𝑚. 

3. 𝐼𝐹 𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑖𝑠 𝐻𝑖𝑔ℎ, 𝑇𝐻𝐸𝑁 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝐿𝑜𝑤. 

4. 𝐼𝐹 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝐻𝑖𝑔ℎ 𝐴𝑁𝐷 𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝐻𝑖𝑔ℎ, 𝑇𝐻𝐸𝑁 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝐻𝑖𝑔ℎ. 

5. 𝐼𝐹 𝑎𝑖𝑟 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 𝑖𝑠 𝐻𝑖𝑔ℎ 𝐴𝑁𝐷 𝑠𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝐿𝑜𝑤, 𝑇𝐻𝐸𝑁 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝐿𝑜𝑤. 

The decision to use five fuzzy rules was based on the Pareto principle in irrigation control, 

where approximately 80% of irrigation variability can be addressed using dominant factors 

(soil moisture and temperature)  (A. K. Singh et al., 2022b). Rules 1 − 3 address these 

dominant factors directly. Adding rules beyond five yielded marginal improvements (< 2%) 

while significantly increasing computational complexity. Therefore, rules 4 − 5 are introduced 

as corrective rules to capture environmental interactions such as solar radiation and humidity. 

FIS Inference Mechanism 

The inference process includes three main stages: 

1. Fuzzification, converts crisp input values into fuzzy values using membership functions. 

2. Fuzzy Rule Evaluation applies fuzzy logic rules to compute the activation levels of output 

fuzzy sets. 

3. Defuzzification, converts fuzzy outputs into a crisp irrigation level using the centroid 

method represented by the following Equation (10). 

 
𝑦 =

∑  𝑦𝑖𝜇(𝑦𝑖)

∑  𝜇(𝑦𝑖)
 

(10) 

Where 𝑦𝑖 represents the discrete output domain values, and 𝜇(𝑦𝑖) is the degree of membership 

corresponding to each value. This mechanism ensures that the FIS model producess a precise 

irrigation level recommendation based on input environmental conditions. 
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Adaptive Neuro-Fuzzy Inference System (ANFIS) Implementation 

The architecture of the implemented ANFIS system is illustrated in Figure 2. 

 

Figure 2 Implemented ANFIS Architecture 

Hybrid Architecture Design 

The ANFIS developed in this study is constructed based on a simplified Takagi–Sugeno–Kang 

(TSK) model comprising five distinct layers. The architecture is designed to achieve a balance 

between computational efficiency and interpretability, ensuring that the system remains 

practical for real-time applications while maintaining the transparency characteristic of fuzzy 

logic models. 

To achieve this, the model employs a sequential flow of information in which each layer 

executes a distinct function within the fuzzy inference process. The structure separates tasks 

into input preprocessing, fuzzification, rule evaluation, normalization, and output 

aggregation, enabling efficient computation and simultaneous optimization of membership 

functions and rule parameters. Each layer is presented as follows. 

Input Layer 

The input layer serves as the initial stage of the ANFIS architecture, processing four 

normalized variables that represent the key environmental parameters of the system. These 

inputs consist of soil moisture ( 𝑥1 ), temperature ( 𝑥2 ), air humidity ( 𝑥3 ), and solar radiation 

https://doi.org/10.58291/ijec.v4i1.399
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( 𝑥4 ). All input variables are scaled to the range [0,1]. The input vector is expressed by 

Equation (11). 

 𝑥 = [𝑥1( soil ), 𝑥2( temp ), 𝑥3( humidity ), 𝑥4( solar )] ∈ [0,1] (11) 

Fuzzification Layer 

In the second stage, the input variables are transformed into fuzzy sets through the application 

of Gaussian membership functions. Gaussian membership functions are used because of their 

smooth, continuous shape, which ensures differentiability—an essential property for gradient-

based learning in ANFIS. This allows the optimizer to adjust parameters effectively and 

supports stable convergence during training. Each input variable is represented by three 

membership functions corresponding to the linguistic terms Low, Medium, and High. The 

membership degree for the 𝑖-th input under the 𝑗-th membership function is defined as the 

following Equation (12). 

 𝜇𝑖𝑗(𝑥𝑖) = exp (−
(𝑥𝑖 − 𝑐𝑖𝑗)

2

2𝜎𝑖𝑗
2 ) 

 

(12) 

where 𝑐𝑖𝑗 denotes the center of the 𝑗-th membership function for the 𝑖-th input, and 𝜎𝑖𝑗 

represents its width. The centers 𝑐𝑖𝑗 are initialized to be evenly distributed within the range 

[0,1] to ensure comprehensive coverage of the input domain, while the widths 𝜎𝑖𝑗 are fixed at 

0.15 to provide moderate overlap between adjacent membership functions. This configuration 

promotes smooth transitions between fuzzy sets and supports effective gradient flow during 

the training process. 

Rule Generation 

The third layer generates the fuzzy rule base that connects the input variables to the system 

output. To prevent a combinatorial explosion of rules, the total number is constrained to 25, 

compared to the 81 rules that would be produced by the complete Takagi–Sugeno–Kang 

configuration for four inputs with three membership functions each. 

Within this reduced set, the first ten rules are explicitly defined to cover fundamental 

combinations of Low and Medium membership functions. For example, a typical rule takes 

the form as shown in Equation (13). 

 
IF 𝑥1 is Low AND 𝑥2 is Low AND 𝑥3 is Low AND 𝑥4 is Low THEN 𝑦

= 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) 

 

(13) 

https://doi.org/10.58291/ijec.v4i1.399
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The remaining fifteen rules are constructed using varied input–membership function pairings 

to ensure broader coverage of the input space without requiring the full exhaustive rule set. 

This selective limitation preserves the essential input–output relationships while significantly 

reducing computational complexity and training time. 

Normalization Layer 

The fourth layer performs the normalization of the rule firing strengths to ensure that the 

contributions of all active rules are expressed as relative weights. For each rule 𝑘, the 

normalized firing strength 𝑤‾𝑘 is computed using Equation (14). 

 𝑤‾ 𝑘 =
𝑤𝑘

∑  25
𝑚=1  𝑤𝑚 + 𝜀

 

 

(14) 

where 𝑤𝑘 denotes the unnormalized firing strength of the 𝑘-th rule, and 𝜀 = 10−10 is a small 

positive constant added to prevent numerical instability during division. This normalization 

step guarantees that the total weight of all rules sums to one, thereby enabling a consistent 

and stable aggregation of rule outputs in the subsequent layer. 

Consequent Layer 

The fifth layer implements the consequent part of the fuzzy inference system using first-order 

Takagi-Sugeno-Kang (TSK) rules. Each of the 25 fuzzy rules is associated with a local linear 

model that defines the system output as a weighted combination of the input variables. For 

the 𝑘-th rule, the output function is expressed by Equation (15). 

 𝑓𝑘 = 𝑝𝑘𝑥1 + 𝑞𝑘𝑥2 + 𝑟𝑘𝑥3 + 𝑠𝑘𝑥4 + 𝑡𝑘 
 

(15) 

where 𝑝𝑘 , 𝑞𝑘 , 𝑟𝑘 , 𝑠𝑘, and 𝑡𝑘 are the consequent parameters corresponding to the 𝑘-th rule. These 

parameters are initialized to ensure balanced weight distribution and are subsequently 

optimized during training. The outputs from all rules are later aggregated in the final layer to 

produce the overall system output. 

Output Layer 

The final layer aggregates the contributions from all activated rules to produce the overall 

system output. This is achieved through a weighted summation of the individual rule outputs, 

where the normalized firing strengths serve as the weighting factors. The output 𝑦 of the 

ANFIS model is computed using Equation (16). 

 𝑦 =∑  

25

𝑘=1

𝑤‾ 𝑘𝑓𝑘  
(16) 
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where 𝑤‾𝑘 denotes the normalized firing strength of the 𝑘-th rule and 𝑓𝑘 represents the 

corresponding local linear output. This weighted combination integrates the influence of all 

active rules to generate a single crisp output for the system. 

ANFIS Training Protocol 

The ANFIS model is trained using a gradient-based optimization strategy to minimize 

prediction error. The Adam optimization algorithm is employed with a learning rate of 0.01, 

utilizing full-batch updates for each training iteration to ensure stable gradient estimation. 

The loss function adopted is the mean squared error (MSE), which quantifies the difference 

between the predicted and target outputs throughout the training process. 

Training is conducted for 50 epochs without applying early stopping, allowing the network 

parameters to converge over the full training schedule. Both the antecedent parameters ( 

𝑐𝑖𝑗, 𝜎𝑖𝑗 ), which define the membership function distributions, and the consequent parameters 

( 𝑝𝑘 , 𝑞𝑘 , 𝑟𝑘 , 𝑠𝑘 , 𝑡𝑘 ), which represent the coefficients of the local linear models, are optimized 

simultaneously. The parameter updates are performed end-to-end using backpropagation, 

enabling cohesive tuning of the fuzzification and rule-based components to achieve accurate 

input-output mapping. 

This architecture was empirically validated through several key evaluations. Rule reduction 

tests demonstrated that limiting the model to 25 fuzzy rules retained approximately 99.2% of 

the predictive accuracy of a full 81-rule configuration, with a negligible RMSE difference of 

0.0016. The chosen membership function initialization, with 𝜎 = 0.15, provided an optimal 

degree of overlap, supporting stable gradient flow and efficient learning during training. 

Computational analysis revealed that the reduced architecture achieved approximately 3.1 

times faster training compared to the full TSK model, completing in 109 seconds versus 342 

seconds under identical conditions.  

Results and Discussion 

ANFIS Training and Convergence 

The ANFIS model was trained on the prepared dataset using a hybrid learning algorithm 

(combining gradient descent and least-squares estimation). As shown in Figure 3, the training 

error (MSE) decreased monotonically with each epoch and eventually plateaued, indicating 

that the model had converged. Specifically, the MSE fell from around 0.02 at epoch 1 to below 

0.005 by epoch 50, with improvements per epoch becoming negligible toward the end of 
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training. This plateau in the error curve suggests that further training beyond ~50 epochs 

yielded no significant reduction in MSE, effectively meeting the convergence criteria. The 

steady reduction in error followed by its stabilization confirms that the learning process 

successfully adjusted the membership function parameters and rule outputs to better fit the 

training data. 

 

Figure 3 MSE Convergence Plot During ANFIS Training 

FIS and ANFIS Prediction Performance 

Once ANFIS model is trained, both FIS and ANFIS were evaluated on the testing dataset to 

compare their prediction accuracy. The performance metrics of the static FIS versus the 

trained ANFIS are summarized in Table 1. As shown, the ANFIS model achieved significantly 

better accuracy: the RMSE on the test set was notably lower for ANFIS (approximately 0.07) 

compared to the FIS (around 0.13). Similarly, the MAE dropped from about 0.10 with the FIS 

to roughly 0.05 with ANFIS, indicating that the average magnitude of the prediction errors 

was roughly halved. The R² also improved substantially, rising from about 0.85 for the FIS to 

approximately 0.93 for ANFIS. During development, multiple runs consistently demonstrated 

ANFIS outperforming FIS with similar error reductions. The results reported here are from 

the final converged model. Although no formal significance test was performed, the large 

margin of improvement in RMSE, MAE, and R² suggests the performance difference is 

practically significant and unlikely to be due to chance. These results clearly indicate that the 

ANFIS’s learning process yielded a model that fits the data much more closely than the 

untuned FIS. 
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Table 1 FIS and ANFIS Performance Metrics 

Metric FIS ANFIS 

RMSE 0.13 0.07 

MAE 0.10 0.05 
R² 0.85 0.93 

 

Figure 4 further illustrates the difference in prediction performance between the two models 

by plotting their predicted outputs against the actual target values. It can be seen that the 

ANFIS predictions align much more closely with the true output curve, whereas the FIS 

predictions show noticeable deviations. 

Figure 4 FIS and ANFIS Predicted Versus Actual Irrigation Outputs. 

Figure 4 shows the predicted outputs of both the FIS and ANFIS models plotted against the 

actual target irrigation levels. The ANFIS prediction curve aligns much more closely with the 

actual output curve, whereas the FIS prediction curve exhibits noticeable deviations from the 

true values. This performance gap is largely because ANFIS can learn and adjust its fuzzy rules 

through training – giving it greater flexibility to capture complex, nonlinear relationships – 

whereas the FIS relies on a fixed rule set that cannot adapt to such variations. Consequently, 

the FIS model tends to under-predict or over-predict in highly nonlinear regions, while the 

ANFIS model’s output tracks the actual trend with only minimal discrepancies. This visual 
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comparison corroborates the quantitative metrics in Table 1, reinforcing that ANFIS provided 

a more accurate approximation of the target behavior. 

Prediction Error Analysis 

A closer examination of the prediction residuals (the differences between predicted and actual 

values) provides further insight into each model’s performance. As shown in Figure 5, the 

ANFIS model’s errors are far more tightly clustered around zero compared to those of the FIS 

model. Most ANFIS residuals fall within a narrow band, indicating that the majority of its 

predictions deviate only slightly from the true values. In contrast, the FIS residuals are spread 

over a much wider range, with some errors being quite large. For instance, the maximum 

absolute error with the FIS model was significantly higher than that observed with ANFIS, 

reflecting the more variable accuracy of the static FIS. 

 

Figure 5 FIS and ANFIS Error Distribution Histogram 

In addition to magnitude, the distribution of errors suggests differences in bias. The FIS error 

distribution appeared slightly skewed, implying the FIS may consistently under-predict in 

certain regions (leading to a non-zero mean error). Meanwhile, the ANFIS errors were more 

symmetrically centered around zero, indicating minimal systematic bias in its predictions after 

training. Overall, the error analysis confirms that ANFIS not only reduces the average error 

but also produces more consistent and reliable predictions, with fewer extreme outliers than 

the static FIS. 

Execution Time Comparison 

A comparison of computational efficiency between the two modeling approaches is presented 

in Table 2. There is a clear difference in the time required to build or train the models. The 
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static FIS, which does not undergo iterative learning, had a negligible model building time (on 

the order of a fraction of a second), whereas the ANFIS required substantially more time to 

train. In this experiment, the FIS model was essentially instantaneous to set up (approximately 

0.5 s), while the ANFIS training phase took on the order of tens of seconds (around 12.4 s), 

owing to the multiple epochs of parameter tuning. This disparity is expected, as ANFIS 

performs repeated computations to minimize error, in contrast to the one-pass initialization 

of the FIS. 

Table 2 Execution Time Comparison 

Metric FIS ANFIS 

Model training time (s) 0.5 12.4 

Prediction time per 
sample (ms) 

1.0 1.2 

 

In terms of real-time prediction speed (inference), however, the two models are virtually 

identical. Generating an output from the fuzzy system is very fast for both approaches, on the 

order of only a millisecond per input case (as also shown in Table 2). The slight difference in 

average per-sample execution time between FIS and ANFIS (e.g., 1.0 ms vs 1.2 ms) is negligible 

in practice. 

Thus, once the ANFIS is trained, it can be deployed to make predictions just as quickly as the 

static FIS. The primary computational overhead of ANFIS lies in its training phase, which, 

while longer than the FIS setup, is typically performed offline. For practical applications, this 

means that the benefits of ANFIS (in terms of accuracy) can be obtained without sacrificing 

operational speed in deployment, as long as the training can be done ahead of time. 

3D Response Surface Analysis 

To further interpret the behavior of the models, a combined three-dimensional response 

surface plot was generated to visualize the predicted output as a function of the two input 

variables for both systems. Figure 6 presents a side-by-side comparison of the response 

surfaces produced by the static FIS and the trained ANFIS within a single composite figure. 

In the FIS surface (left panel of Figure 6), the output approximation reflects the initial fuzzy 

rules without data-driven adjustment. The surface is relatively simple and exhibits limited 

curvature, which highlights the constraints of the fixed rule base in capturing nonlinear 

interactions between inputs. As a result, the FIS tends to produce smoother but less precise 

transitions, particularly in regions where the true relationship between inputs and output 

changes rapidly. 
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Figure 6 FIS and ANFIS 3D Response Surface 

The ANFIS surface (right panel of Figure 6) demonstrates the impact of adaptive training. 

After optimizing membership functions and rule consequents, the ANFIS surface aligns more 

closely with the underlying data patterns. Notably, the trained surface exhibits more nuanced 

curvature and localized gradients, indicating the model’s ability to capture complex 

interactions between the input variables. The contrast between the left and right panels clearly 

illustrates how ANFIS transforms the initial fuzzy approximation into a more accurate, data-

driven representation. 

This joint visualization emphasizes the performance gap between the models: while the FIS 

provides a transparent but coarse mapping, the ANFIS adapts to produce a more refined and 

realistic response surface, especially in regions of high nonlinearity. 

Comparative Analysis Summary 

To clearly highlight the differences between the Mamdani-type FIS and the ANFIS models, the 

key comparative aspects are summarized in Table 3. This table consolidates performance, 

training behavior, error distribution, computational characteristics, and structural 

complexity, providing a concise overview of how both models perform across critical 

evaluation dimensions. 

Table 3 Summary of Comparative Findings between FIS and ANFIS Across Key Aspects 

Aspect FIS ANFIS 

Predictive 
Accuracy 

Moderate accuracy; RMSE and 
MAE relatively higher; R² lower 
than 1.0. 

Significantly higher accuracy; RMSE 
and MAE roughly halved compared to 
FIS; R² closer to 1.0. 
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Learning and 
Convergence 

No learning phase; performance 
fixed by initial rule base without 
improvement mechanism. 

Underwent successful training; error 
decreased steadily to a low value 
without overfitting. 

Error 
Characteristics 

Larger and more variable errors; 
noticeable bias in certain regions 
due to fixed rule limitations. 

Smaller and more consistent errors; 
residuals tightly distributed with 
minimal variance and bias. 

Computational 
Cost 

Negligible training time; 
extremely fast to initialize and 
deploy; similar prediction speed 
to ANFIS. 

Requires iterative training with 
longer offline optimization; after 
training, inference speed nearly 
identical to FIS. 

Model 
Complexity 

Uses a fixed fuzzy rule base; fully 
interpretable with human-
readable rules. 

Same fuzzy structure as FIS; 
parameters are tuned during training, 
retaining interpretability while 
significantly enhancing accuracy. 

 

Discussion of Findings 

The comparative results obtained confirm the expected advantages of the adaptive neuro-

fuzzy approach over a static fuzzy model. In this case, the ANFIS was able to learn the 

underlying input–output relationship with high fidelity, whereas the fixed FIS could only 

approximate it based on its initial rule set. This outcome is consistent with the fundamental 

idea behind ANFIS: by tuning membership functions and rule consequents using data, the 

model can capture nuances and nonlinearities that an expert-defined FIS might miss. The 

magnitude of improvement observed (substantially lower errors and higher R²) underscores 

how significantly model learning can enhance performance, even when the FIS provided a 

reasonable starting approximation. 

An important aspect of these findings is that the ANFIS achieved its superior accuracy without 

fundamentally changing the model’s interpretable structure. Both the FIS and ANFIS used the 

same number of rules and linguistic terms; the difference was that ANFIS optimized the 

parameters of those rules. Thus, the benefits of data-driven learning were obtained without 

sacrificing the transparency of the fuzzy inference system. This is a notable advantage of 

ANFIS compared to other purely black-box models (such as neural networks without a fuzzy 

structure): one retains a set of understandable fuzzy rules that have simply been refined by 

training. For instance, if the initial FIS was informed by expert domain knowledge, the ANFIS 

process can be viewed as fine-tuning that expert knowledge—improving the rules’ accuracy 

while preserving their qualitative meaning. The ANFIS model effectively combines prior 

knowledge embedded in the initial FIS with the learning capability of neural networks, 

yielding a hybrid model that is both accurate and interpretable. 

It should be noted that the superiority of ANFIS in this study came at the cost of a one-time 

training effort, whereas the FIS required no such data-driven training. In scenarios where 
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ample data are available and accuracy is paramount; the results here strongly support 

choosing ANFIS for model development. On the other hand, if data are very limited or if rapid 

prototyping is needed, a well-crafted FIS might still be used to obtain a quick, interpretable 

solution (albeit with lower precision). Ultimately, the findings illustrate that while a static FIS 

can provide a baseline insight, allowing the system to adapt via ANFIS unlocks significantly 

better performance. This trade-off and the conditions under which each approach is preferable 

are further discussed in the following section on practical implications. 

Building on these findings, it is important to note the limitations of both models, particularly 

the risk of overfitting. The conventional FIS, while interpretable, is static and may 

underperform when conditions deviate from its predefined rules. ANFIS adds adaptability 

through learning but can overfit if the model is too complex or data are insufficient. In this 

study, we minimized this risk by limiting the rule base and validating performance on an 

independent test set. Future work should validate the models with real-world data and apply 

cross-validation or regularization to ensure robust generalization and further reduce 

overfitting. 

Practical Implications and Method Selection Considerations 

Building on the comparative analysis summarized in Table 3, the following considerations 

provide practical direction for selecting between a static FIS and an ANFIS approach 

depending on the application context. These considerations take into account data availability, 

problem complexity, computational constraints, and system adaptability. The summarized 

points are presented in Table 4. 

Table 4 Practical Considerations for Selecting FIS or ANFIS 

Consideration When to Use FIS When to Use ANFIS 

Data Availability Suitable when data are limited or 
costly to obtain; relies on expert 
knowledge to define fuzzy rules 
and membership functions. 

Requires sufficient training data to 
tune parameters; performs best in 
data-rich environments. 

Problem 
Complexity 

Works well for well-understood 
systems where relationships 
between variables are simple and 
can be captured with expert-
defined rules. 

Recommended for complex, 
nonlinear systems where intuitive 
rule creation alone is insufficient to 
capture the underlying patterns. 

Computational 
Resources 

Low computational demand; no 
training phase required; 
deployable quickly with minimal 
processing overhead. 

Requires offline training investment 
due to iterative optimization; after 
training, inference is as fast as FIS. 

Hybrid Strategy Can serve as a baseline model 
constructed from expert 
knowledge. 

Can refine the baseline FIS through 
adaptive training, combining 
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interpretability and data-driven 
optimization. 

Adaptability & 
Maintenance 

Remains static unless manually 
revised; less suited for 
environments where conditions 
change frequently. 

Easily retrainable with new data to 
adapt to changing system dynamics, 
making it advantageous in dynamic 
and evolving environments. 

 

In summary, the choice between FIS and ANFIS should be considered by the specific 

requirements and constraints of the application. When interpretability, simplicity, and quick 

deployment are the top priorities (and data or time are limited), a well-crafted FIS may suffice. 

However, when data are plentiful and accuracy is paramount, ANFIS offers a powerful tool 

that can substantially improve predictive performance. The present study’s results provide a 

clear demonstration of these trade-offs and can assist practitioners in selecting the 

appropriate method for their needs. 

Conclusions 

This study successfully implemented and evaluated two fuzzy inference approaches—

Mamdani-type FIS and ANFIS—to predict optimal irrigation requirements based on four key 

environmental parameters: soil moisture, air temperature, humidity, and solar radiation. The 

findings clearly indicate that the ANFIS approach outperforms the conventional FIS in terms 

of prediction accuracy and adaptability. While ANFIS requires a longer offline training phase 

(~12.4 s vs. ~0.5 s for FIS), its real-time inference speed is nearly identical (~1 ms/sample), 

enabling higher accuracy without sacrificing operational speed. This enables ANFIS to provide 

significantly higher accuracy and dynamic responsiveness without sacrificing operational 

speed during deployment. Despite this, the FIS approach maintains a notable advantage in 

rule interpretability, which can benefit practitioners needing transparent and domain-aligned 

decision support. Therefore, the choice between ANFIS and FIS should align with the intended 

application: ANFIS is recommended when accuracy and responsiveness are prioritized, while 

FIS is better suited for use cases where rule transparency is critical. This research contributes 

significantly to the field of intelligent agricultural systems by offering a comparative 

framework for selecting fuzzy logic-based control methods, promoting more efficient water 

resource management, and providing a foundation for future work involving method 

optimization and real-world deployment in precision agriculture. 
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