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Abstract: This study proposes a hybrid neural network that integrates a multilayer

perceptron (MLP) with optimised Sugeno-type fuzzy reasoning for object classification. The
system employs a vertically mounted array of ultrasonic sensors arranged 10 cm apart at heights
ranging from 80 cm to 180 cm. Each sensor measures the distance of passing objects, producing
eleven readings that capture vertical distance patterns. These readings are processed by an
MLP with a single hidden layer of 22 neurones to identify characteristic spatial signatures. A
refined similarity-based classification is then performed using an optimised Sugeno-type fuzzy
inference system configured with five linguistic variables: Very Low (VL), Low (L), Medium
(M), High (H), and Very High (VH). Training and testing were conducted using datasets

collected at SLBN-A Citeureup, Cimahi, comprising two object categories: human (visually
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impaired individuals) and nonhuman (inanimate objects). The model was trained for 100
epochs with a learning rate of 0.001. Experimental results show accuracy exceeding 90%, with
the hybrid model outperforming the conventional MLP by 1.83%. This improvement reduces
false positives and prevents erroneous obstacle warnings. The integration of fuzzy reasoning
also enhances the system's robustness to uncertainty and stabilises decision-making when class

boundaries overlap.

Keywords: Ultrasonic Sensor, MLP, Fuzzy, Optimisation, Classification.

Introduction

Educated blind people are essentially equipped with orientation and mobility (O&M) skills to
support independence when moving from one point to another in their environment.
Typically, practitioners combine these skills with assistive devices like manual canes, adaptive
electronic canes, or floor tracks. However, the combination of O&M techniques with these
assistive devices still has limitations, as they generally only provide distance information to
nearby objects and basic path guidance, without the ability to understand environmental
conditions more contextually. As a result, blind people still experience difficulties navigating
spaces independently, safely, and efficiently. This condition causes user responses to be more

reactive than predictive, increasing the risk of navigation errors in social interactions.

Recent research on navigation assistive systems for blind people shows a trend toward

integrating multimodal sensors, adaptive algorithms, and fuzzy logic to improve accuracy,

safety, and user experience (Bhatlawande et al., 2024; Li et al., 2019; Silva & Wimalaratne
2020). Several studies have proposed indoor navigation systems based on RGB-D cameras

and semantic maps to detect dynamic obstacles and plan paths in real time (Messaoudi et al.,

2022). Contextual navigation approaches also use sonar sensors, cameras, and fuzzy logic to

adapt to changing environmental conditions (Bouteraa, 2021). Additionally, wearable

technologies such as machine learning-based smart clothing that combines ultrasonic sensors,
cameras, and GPS have been developed to detect obstacles and provide dynamic movement

directions, thereby improving navigation efficiency and reducing user cognitive load (Lee et

al., 2023; Okolo et al., 2025).

Comprehensive studies have shown that single-sensor systems, such as LiDAR, cameras, or
ultrasonic sensors, are still limited in detecting moving objects, recognising the direction of

arrival, and adapting to varying environmental conditions (Barontini et al., 2021; Qiu et al.,

2020; Tian et al., 2021). Therefore, multi-sensor fusion combined with adaptive fuzzy logic is

a more effective approach in handling data uncertainty and generating real-time context-
based decisions (Kleinberg et al., 2023). Furthermore, the integration of sensory and haptic

technologies, such as egocentric vision, vibrotactile feedback, and wearable haptic systems, is
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being used to enhance users' spatial perception both indoors and outdoors (Setiadi et al.,

2020; Solihin et al., 2023; Supriyadi et al., 2020). In Indonesia, the development of adaptive

assistive devices is carried out through technology transfer of smart canes and neural network-
based navigation systems to expand the mobility of visually impaired students in special
schools (Supriyadi et al., 2021). Furthermore, an intelligent companion robot combining GPS,
a camera, and LiDAR is capable of mapping areas and determining its direction of travel
independently. GPS determines the starting and destination positions, while the camera and
LiDAR recognise objects and construct a spatial representation of the environment (Zhang et
al., 2023). Based on this gap, this research aims to combine an ultrasonic sensor array with a
Sugeno-type neuro-fuzzy approach to adaptively detect and classify objects in real-world
environments. This approach is expected to support safer and more contextual navigation for

people with visual impairments.

The main objective of this research is to develop, design, and implement an object detection
and classification system (human or nonhuman) based on an ultrasonic sensor array. The
system is designed to be adaptive to prediction uncertainty, accurate, and integrated into
mobility assistive devices installed in the environment. The main contribution of this research
is the development of a data processing algorithm model using a hybrid MLP with Sugeno
fuzzy reasoning optimised through dynamic parameters (yase, Y, and singleton values). This
article is structured as follows: The Research Method section discusses the hardware and
algorithm model used. The Results and Discussion section presents the experimental results
and compares the performance of MLP with the hybrid model. The final section concludes the

study.

Research Method

This study uses an experimental approach to develop, design, implement, and test a
classification system based on an array of ultrasonic sensors. The system consists of two main
components: hardware for distance data acquisition and a processing module based on the
hybrid MLP-Fuzzy Sugeno algorithm. An array of 11 ultrasonic sensors is placed vertically to
capture distance profiles of objects at various heights. The number of 11 sensors was chosen
based on preliminary testing, which indicated that configurations with fewer sensors were
unable to form consistent vertical patterns to distinguish between human and nonhuman
objects, while adding sensors beyond 11 did not provide significant accurate improvements

but increased scanning latency.

Hardware

The system hardware consists of three main parts: input, data processing, and output, as

shown in Figure 1. Eleven ultrasonic sensors are connected to two separate multiplexers for
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the trigger and echo paths, thus enabling controlled scanning using a minimal number of
microcontroller pins. The microcontroller runs a hybrid MLP—fuzzy algorithm to perform
inference from the distance data and generate classification decisions. The classification
results are forwarded to the DFmini-Player module, amplified by an amplifier, and finally

delivered through the speaker as audio feedback to the user.

Output
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: (trigger pins) B (trigger) =
I I I Microcontroller
I'| Ultrasonic sensors 1to 11 Multiplexer : !
: (echo pins) (echo) i 1 MLP + Fuzzy
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Figure 1 Hardware Block Diagram

Table 1. presents the hardware pin configuration that connects the CD74HC4067 multiplexer
and the DFPlayer Mini module to the microcontroller. MUX A handles the echo path, and
MUX B handles the trigger path of the eleven ultrasonic sensors, where the selector pins
S0-S3 are mapped together to pins D2—D5 of the microcontroller. The COM pins of MUX A
and MUX B are routed to pins D7 and D6, respectively, while the DFPlayer Mini module uses

a software serial interface via pins D8 (Rx) and D9 (Tx) to generate audio output.

Table 2. presents the mapping configuration between the ultrasonic sensors and multiplexers
in the system. Each HC-SR04 sensor is connected to two CD74HC4067 multiplexers, one each
for the Trigger and Echo paths. The trigger paths from the first to the eleventh sensor are
allocated sequentially on MUX B channels (CHo—CH10), while the echo paths are mapped in
parallel on MUX A channels with the same channel sequence. This architecture allows
centralised control of all sensors through two main signal paths, reducing the pin
requirements on the microcontroller and simplifying the scanning process. All VCC pins of
the sensors and multiplexers are connected to a 5 V supply, while all GND pins are connected

to the system ground to maintain a stable voltage reference during data acquisition.
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Table 1 Input/Output Components and Microcontroller Wiring Configuration

No | Components Component pins Microcontroller pins
1 VCC 5V
GND GND
So D2
CD74HC4067 (MUX A -|S1 D3
Echo) S2 D4
S3 D5
COM (SIG) D7
EN / INH GND
2 VCC 5V
GND GND
So D2
CD74HC4067 (MUX B -|S1 D3
Trigger) S2 D4
S3 D5
COM (SIG) D6
EN / INH GND
3 VCC 5V
GND GND
DFPlayer Mini TX D8 (Rx for SoftSerial)
RX Do (Tx for SoftSerial)
SPK1 / SPK2 Speaker
Table 2 Ultrasonic Sensors and Multiplexer Wiring Configuration
No | Components Component pins Mux pins
1 _ Trigger MUX B CHo
HC-SRo4 #1 Echo MUX A CHo
2 Trigger MUX B CH1
HC-5Ro4 #2 Echo MUX A CH1
3 ] Trigger MUX B CH2
HC-SRo4 #3 Echo MUX A CH2
4 : Trigger MUX B CH3
HC-SRo4 #4 Echo MUX A CH3
5 : Trigger MUX B CH4
HC-SRo4 #5 Echo MUX A CH4
6 : Trigger MUX B CHs
HC-SRo4 #6 Echo MUX A CHs
7 : Trigger MUX B CH6
HC-SRo4 #7 Echo MUX A CH6
8 Trigger MUX B CH7
HC-SRo4 #8 Echo MUX A CH7
9 ) Trigger MUX B CHS8
HC-SRo4 #9 Echo MUX A CHS
10 : Trigger MUX B CHg
HC-SRo4 #10 Echo MUX A CHg
11 Trigger MUX B CH10
HC-5Ro4 #11 Echo MUX A CH10
Note: Both VCC pins are connected to the 5V supply, and all GND pins are connected to
ground.
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Algorithm

This study develops a hybrid MLP-fuzzy Sugeno auto-tuned algorithm model to improve the
accuracy of ultrasonic signal-based object classification. The model is designed to combine
the advantages of neural networks that are capable of extracting non-linear representations
from numerical data and fuzzy inference systems (FIS) that are capable of imitating human
decision-making through linguistic reasoning. Overall, the research stages consist of data
acquisition and processing; normalisation; training of the MLP artificial neural network;
formation of the Sugeno fuzzy system; and auto-tuning-based hybrid optimisation, as shown

in Figure 2.

Acquisition
and Preprocessing

¥

Normalization

MLP

v

‘_-__..

e

Auto-Tuning Sugeno Fuzzy

Rl S

Hybrid Classification

Figure 2 Software Block Diagram

Data Acquisition and Preprocessing
The dataset consists of distance measurements obtained from 11 ultrasonic sensors, labelled
in binary form as human and nonhuman. The dataset is divided into two groups: training data

and testing data (Solihin, 2025). The input variable is denoted as X, as expressed in Equation
(D).

X =[x1,x2, e, X11 ] (1

where x; is the measured distance from the i-th sensor. The class labels ye{0,1} represent the

nonhuman and human categories, respectively. To ensure stable network training, the data
were normalised using the StandardScaler method, as shown in Equation (2), to achieve a
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zero-mean and unit-variance distribution. Here, pdenotes the mean value, and crepresents

the standard deviation of each feature.

X TR (2)

MLP Architecture

The MLP model is designed with 11 input neuronees representing the distance from each
sensor, 22 neuronees in the hidden layer, and one binary output neurone, as shown in Figure
3. The selection of 22 neurones is based on the results of an initial evaluation using a simple
grid search in the range of 8—32 neurones. The results indicate that 22 neurones provide an
optimal balance between accuracy and model complexity. The ReLU activation function (5) is
used to accelerate convergence, while the sigmoid o (6) is used at the output to map the
human—-nonhuman probabilities. This architecture is designed to approximate a non-linear

function that relates the input vector X to the output probability 7 p (7). W1, W,b1,b, are

weights and biases learnt through optimisation using the Adam Optimiser algorithm.

11
Z1,j = Z wlj,i X;+ b1] (3)

i=1

22
2ok = 2 ka,]- h] + b2 (4)

=1
hj =f(z1;) = ReLU(z1;) = max(O, zlj) (5)
o(zy) =— (6)

2 1+e%2

Jmrp =0 (Wa - f(W1X +b1) + Do) (7)

The MLP threshold in this study was set to 0.5. Probability values close to the threshold range
[0.4—0.6] result in ambiguous classifications. In such cases, the fuzzy system plays a dominant
role in refining the classification outcome. However, for extreme probability values
approaching o (nonhuman) or 1 (human), the influence of the MLP on the final decision

becomes minimal.
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Figure 3 The MLP Model

Sugeno Fuzzy

The Sugeno Fuzzy System is used to refine the probabilistic classification results of the MLP
neural network through a linguistic reasoning-based approach. This model consists of three
main stages: fuzzification, inference, and defuzzification. The main objective of integrating
Sugeno Fuzzy System in this study is to improve predictions by considering the uncertainty of

the MLP results and adding an element of interpretability to the classification process.

In the first stage of fuzzification, five linguistic sets (VL, L, M, H, VH) (8) are selected to map
the output probabilities of (0 <y p <1) MLP ( §\mrp) to the fuzzy domain. The number five
is chosen because it provides sufficient resolution to handle areas of ambiguity without
excessively increasing the complexity of the rules. The triangular and trapezoidal shapes were

chosen because they were computationally efficient and easy to optimise.
Linguistic = {Very Low (VL), Low (L), Medium (M),High (H), Very High (VH)} (8)

Each fuzzy set is represented by a triangular or trapezoidal membership function, which
determines the extent to which a probability value belongs to a particular linguistic category.
The details of the design model for each linguistic VL (9), L (10), M (11), H (12), VH (13).

VL = (0, 0, 0.2) 9)
L= (0.1, 0.2, 0.3,0.4) (10)
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M= (0.3, 0.5, 0.7) (11)
H= (0.6, 0.7, 0.8,0.9) (12)
VH = (08, 1, 1) (13)

The definition of searching for the membership degree value p uses triangular (14) and

trapezoidal (15) types. For each MLP output probability value ( §yrp), the system calculates

the membership degree pyr,ur,um, i, pva for the five fuzzy sets.

0, x<a
E_a, a<x<b
HAG) = (225 (14)
, b<x<c
c—b
0, X>cC
p x<a
X—a
o a<x<b
upx)={ 1, b<x<c (15)
d-x
Y c<x<d
0, x>d

The second stage of fuzzy inference, a rule-based decision-making process that describes the
logical relationship between input and output fuzzy sets. This study uses the oth-order Sugeno
model with rule R;(16), where the output of each fuzzy rule is a numeric constant called a
singleton. The details of the fuzzy rules used as a model consist of five rules (R1-R5) as shown

in Table 3. The Ajis the fuzzy label of the input and s;is a singleton value (numerical constant).
LinguR;:IF ?MLP IS A; THEN y; =s; (16)

Table 3 Rule Design Model and Singletone Output

Rules | If ... Then ..... Condition Singletone
R1 If ?MLP is VL Then Vi=5Si 0.0< ?MLP <0.2 0.00
R2 If ?MLP is L Then Yi=Si 0.1< ?MLP <04 0.30
R3 If yMLP is M Then Yi=Si 0.3 ?MLP <0.7 0.60
R4 Ifs\’MLP is H Then Yi=Si 0.6< ?MLP <0.9 0.85
R5 If ymep is VH Then y;=s; 0.8< §\rp <1.0 1.00

The degree of rule activation Rjis calculated from the membership value of the fuzzy function
in the previous stage. Then, each rule contributes to the overall inference result calculated
using a weighted average approach (18). The value n = 5indicates the number of fuzzy rules,

and «¢is a positive arbitrary constant with a very small value to avoid division by zero.

wi = pa, (YMLP) (17)
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2?21 w; S;

E?:l w;+ €

YrIS = (18)

The third stage of defuzzification is carried out using a direct method through the calculation

of the weighted average (18). The defuzzification result value (yg) is a single crisp (numeric)

number that describes the results of the fuzzy system decision based on the combination of

active rules.

Fuzzy Integration Optimisation in Hybrid Systems

The fuzzy Sugeno output (ygg) is not used separately, but rather adaptive optimization is
performed with the MLP results through dynamic weights agy,. This integration aims to

balance the probabilistic reliability of the MLP with the stability of fuzzy inference against

data uncertainty. The hybrid integration equation (19) and dynamic weights a4,,(20).

YHybrid = ®dyn * YMLP + (1 = &qyn) * YFIS (19)
dyn = clip(@pase + 7 -1 YmLp — 0.5 | ,0,1) (20)

Parameter oy, controls the level of contribution of the MLP model to the final decision, while
Y adjusts the dynamic sensitivity to prediction uncertainty.
The range of values for both parameters is arbitrary ay,e = [0.1-0.9] and y = [0.5-2.0],
while for singletone it is made into three candidates [0.0, 0.25, 0.5, 0.75, 1.0], [0.0, 0.3, 0.6,
0.85,1.0], and [0.0, 0.2, 0.4, 0.8, 1.0]. Both parameters are optimised through an auto-tuning
grid search algorithm, while the singleton value [sq,s,,53,54,55]is adjusted to produce optimal
accuracy on the highest validation data. The auto-tuning results selected a combination of

Mpase = [04], 7 = [1.2], and singletone [0.0, 0.3, 0.6, 0.85, 1.0] because it provided the best

accuracy on the validation data. The selection of these values refers to the algorithmic

tendency where the middle value (M, H) is more sensitive to probability shifts close to the
threshold.

Results and Discussion

This section presents a more in-depth analysis of the results, focusing on the characteristics
of the classification errors and their practical implications for use in real-world environments.
The research dataset was obtained through a direct acquisition process from ten visually
impaired subjects at SLBN-A Citeureup, Cimahi City, as shown in Figure 4. This revision
strengthens the analysis by adding interpretations of model failures, potential causes, and

their impact on the navigation assistance system.
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Figure 4 Dataset and Testing

The dataset was divided into two subsets using a stratified sampling approach to maintain a
representative class distribution, with 1,400 data sets (70%) used for training and 600 data
sets (30%) allocated for testing. System evaluation was conducted in two main stages. In the
first stage, a single MLP model was tested to gauge the neural network's ability to extract and
recognise multidimensional patterns in ultrasonic sensor signals. In the second stage, a hybrid
MLP-Fuzzy Sugeno model was evaluated to assess the contribution of the fuzzy inference
mechanism in refining the MLP's probabilistic output, particularly through rule-based
adjustments designed to improve classification accuracy under conditions of ambiguity. This
two-stage approach allows for a more comprehensive comparative analysis between the

performance of the conventional model and the fuzzy logic-based hybrid model.

MLP Training

The MLP model training results show that the learning process is stable and converges well.
The training and validation loss curves show a sharp decline in the first 20 epochs, then
decrease more slowly until they approach a minimum value at the end of the 100th epoch, as
shown in Figure 5. No divergence is observed between the two curves, indicating that the

model is not overfitting.
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Figure 5 Training and Validation Loss

Meanwhile, the accuracy improvement is consistent, where the training accuracy and
validation accuracy values increase from around 0.6 at the beginning of training to exceed 0.9
at the end of the epoch, as shown in Figure 6. The difference between the two is relatively small
(<0.01), which indicates a balance between the learning and generalization capabilities of the
model. This condition indicates that the model is able to capture the characteristics of sensor

data patterns effectively.

—— Train Acc ;
0.9 7 —— wval Acc MM\”"AN o
et !
0.8 1
=,
@ 0.7
=
o
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|
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|
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u] 20 40 1] BO 100
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Figure 6 Training and Validation Accuracy
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MLP Testing

Based on the test results, a confusion matrix was obtained as shown in Figure 7. True Negative
(TN) of 281 indicates the number of non-human class data that were successfully classified
correctly, while False Positive (FP) of 30 indicates the number of non-human data that were
incorrectly classified as human. Meanwhile, False Negative (FN) of 23 represents undetected

human data, and True Positive (TP) of 266 represents correctly classified human data.

- 250
- 200

- 150

Actual

- 100

Predicted

Figure 7 MLP Confusion Matrix

Based on the matrix, the MLP model produced an accuracy of 91.17%, a precision of 89.86%,
a recall of 92.04%, and an Fi-score of 90.94%. These values indicate that the MLP model is
capable of performing classification with relatively good performance and a balance between
the ability to detect positive and negative classes. However, there is still a fairly high
misclassification rate in the non-human class (FP = 30), which indicates that the decision
boundary (threshold) in the MLP output layer is too rigid to the variation in output
probabilities. This condition demonstrates the limitations of MLP in handling data with a high
degree of ambiguity or overlap between classes. This phenomenon often occurs when the
sensor spacing pattern exhibits vertical contours resembling the human body, such as a high-

backed chair or an object with an unevenly reflecting ultrasonic surface.
The ROC curve shows a high AUC, indicating strong class separation ability, as shown in

Figure 9. However, the probability zone of 0.4—0.6 represents an area of significant overlap

where MLP struggles to make a definitive decision.

Hybrid Testing

The hybrid model test results produced a confusion matrix as shown in Figure 8. Based on

these results, an accuracy of 93.00%, precision of 95.57%, recall of 89.62%, and F1i-score of
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92.50% were obtained. There was a significant increase in the precision value, indicating that

the system is more selective in determining the positive class. Although there was a slight

decrease in the recall value (from 92.04% to 89.62%), this decrease was minor and still within

the system's tolerance range.

Actual

Figure 8 Hybrid Confusion Matrix

250
12
- 200

- 150
- 100
30
50
|
] 1

Predicted

In addition, the Area Under Curve (AUC) value of 0.9829 indicates a very good and stable

class separation capability, as shown in Figure 9. This shows that the fuzzy mechanism is able

to refine the classification process carried out by MLP by adding a decision-making layer

based on membership degrees, not just binary decisions.

1.0 1

0.8 1

0.6

0.4 1

True Positive Rate

0.2

0.0 1—*

— MLP (AUC=0.983)
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Figure 9 ROC Curve Comparison
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Comparative Analysis

This study demonstrates a distinctive methodological improvement compared with related
works, summarised in Table 4. The vertical configuration of eleven HC-SR04 sensors provides
a richer height-based spatial signature than single-sensor or small-array ultrasonic systems
and achieves more stable discrimination of human and non-human objects in variable
environments. In contrast, vision-based approaches (Li et al., 2019), (Zhang et al., 2023) offer
high accuracy for static and dynamic scenes but remain sensitive to illumination and require

higher computational resources. Context-aware or multimodal systems (Silva & Wimalaratne

2020), (Okolo et al., 2025) improve robustness, yet their performance depends strongly on
infrastructure and sensor visibility. Thus, the proposed ultrasonic-based architecture provides
a practical balance between robustness, cost, and computational efficiency for wearable

navigation assistance.

From an algorithmic standpoint, the hybrid MLP-Fuzzy Sugeno model combined with
adaptive weighting (ap.se and y) yields a clear performance advantage over conventional MLP

and earlier fuzzy-based systems (Bouteraa, 2021). The model achieves a 1.83% accuracy

improvement and a 5.71% precision gain relative to standard MLP, driven by the ability of
Sugeno inference to refine MLP output probabilities in ambiguous boundary regions. Acting
as a decision refiner, the fuzzy layer applies non-linear membership functions and weighted
rules to stabilise classification outcomes, effectively reducing false positives without degrading
performance in other classes. This adaptive inference mechanism is not present in prior

neuro-fuzzy implementations that rely on static rule sets or non-adaptive fusion.

The evaluation results further highlight the strength of this approach, utilising 2,000 field
samples collected from ten subjects, larger and more realistic than datasets in fuzzy-based
prototypes or small-scale sensor-fusion studies. The model attains 93.00% accuracy, 95.57%
precision, and 89.62% recall, representing an acceptable trade-off where the slight reduction
in recall is outweighed by substantial false-positive suppression. For navigation assistance,
minimising unnecessary alerts is directly linked to user comfort and trust, making precision
a critical performance metric. Overall, the proposed hybrid model provides a competitive
balance of accuracy, stability, and practicality, outperforming earlier ultrasonic, fuzzy, and

multimodal references in its target application domain.
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Table 4 Comparatif Comparison

Author Sensors Method E Dat? / Results
xsperiment
(Solihin et al. MLP 2,000 field Accuracy 93.00%,
2025) (11—22-1) + | samples (10 precision 95.57%,
_ . o/.
11x HC-SR04 Sugeno subjects), 70/30 | recall 89.62%;
h Fuzzy (5 split accuracy
(vertical, 10 lineuisti . 829%
cm spacing) 1ngu1§tlcs) + 1mprovement 1.83%
adaptive vs MLP; focus on FP
weighting reduction.
(abase, Y)
(Lietal., 2019) Indoor (public) | The vision method is
study strong for
Vision + static/dynamic
Camera / . :
L semantic objects but
RGB (vision) .
mapping vulnerable to
lighting; it does not
focus on ultrasonic.
(Silva & Limited Emphasises the
Wimalaratne literature/experi | benefits of
2020) Multimodal | Context- mental study multimodal for.
robustness; a single
(context aware R
: sensor has limitations
Sensors) algorithms .
in real-world
conditions.
(Bouteraa, Prototype The evidence
2021) implementation | demonstrates that
Wearable Fuzzy fuzzy eqhances
. % uncertainty tolerance
sensors + decision d red 1
fuzzy support and recuces neurat
Integration 1n certain
studies.
(Zhang et al., Prototype robot | The system performs
2023) . well in mapping and
Visual . .
Camera + recognition + robotics, but it
LiDAR 5 requires more
control .
expensive and
complex hardware.
(Okolo et al. . Small scale Demonstrates
Multimodal . . .
2025) . Sensor fusion | evaluation benefits of fusion;
(vision+ultra . e s
. + ML infrastructure/visibili
sonic)
ty dependent.

Conclusions

The hybrid MLP—-Fuzzy Sugeno model developed in this study demonstrates consistent
improvements in accuracy and precision compared to a single MLP model, primarily through
a significant reduction in false positives and increased decision stability in regions of
ambiguity. These results confirm the effectiveness of fuzzy reasoning integration in refining
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the probabilistic output of neural networks, particularly in ultrasonic sensor-based
applications with high levels of uncertainty. However, system performance is still affected by
dynamic environmental conditions, such as multiple reflections in narrow corridors, varying
angles of incidence of objects, and changes in the physical conditions of the environment that
can disrupt measurement reliability. These results indicate that the developed system has the
potential to be applied to navigation aids for people with visual impairments in an adaptive
and real-time manner. In the future, it is recommended that the system be integrated with
multimodal sensors, supported by edge computing and fuzzy adaptive tuning to improve

processing speed and adaptability to changing environmental conditions.
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