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Abstract: This study proposes an optimization model integrating Internet of Things (IoT)

and Machine Learning (ML) for renewable energy-powered aeroponic systems as a conceptual
framework to enhance sustainable agriculture and address global food security challenges. The
model is designed to mitigate land degradation, water scarcity, and the impacts of climate
variability on crop productivity. It combines IoT-based real-time monitoring of key
environmental variables temperature, humidity, pH, electrical conductivity, and light intensity
with Long Short-Term Memory (LSTM) networks for time-series prediction of crop growth and
resource requirements. Renewable energy sources, particularly solar photovoltaic systems with
battery storage, ensure reliable and environmentally friendly power supply. The proposed
approach emphasizes predictive optimization, where IoT data streams inform adaptive LSTM
algorithms for precise irrigation and nutrient control. Model performance is evaluated using
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of

determination (R2). Although the study remains conceptual and simulation-based, validation
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results demonstrate high predictive accuracy and efficiency. This research establishes a
foundational framework for subsequent prototype development, experimental validation, and
techno-economic evaluation toward scalable, energy-efficient, and sustainable smart farming

systems.
Keywords: Internet of Things (IoT), Machine Learning, Renewable Energy-Based

Aeroponics, Long Short-Term Memory (LSTM), Sustainable Food Security.

Introduction

Indonesia is currently confronted with severe food security challenges resulting from
progressive agricultural land degradation and the escalating impacts of climate change. The
conversion of rice fields has intensified over the past decades, with paddy fields declining from
8.4 million hectares in 1990 to only 7.18 million hectares in 2022, equivalent to an annual
reduction of more than 38,000 hectares (Assa et al., 2019; Ivanka et al., 2024). Recent
statistical data further indicate a significant decline in national rice production, from 31.54
million tons to 30.90 million tons in 2023, primarily due to reduced harvesting areas
(Hibatullah et al., 2024). These issues are compounded by increasing urbanization, escalating
economic pressures, and persistent inequities in land distribution policies, which further
accelerate land degradation (Hajad et al., 2025). Moreover, global climate change contributes
significantly to declining agricultural productivity through altered rainfall patterns,
temperature fluctuations, and soil degradation (Hakim & Herdiansah, 2017). To address these
multifaceted challenges, precision agriculture has been recognized as a promising approach,
as evidence shows that mechanization has already enhanced rice production efficiency in
major rice-producing regions (Herdiansyah et al., 2023). Forecasting studies also predict
continued agricultural land loss, such as in Indramayu Regency, which is expected to lose
approximately 1,602.73 hectares of paddy fields by 2030 (Gandharum et al., 2025). In
response, integrated farming systems and diversification strategies are increasingly

recommended to strengthen long-term food security resilience (Ansar, 2018).

Building upon the aforementioned challenges of land degradation and climate change,
technological innovation particularly through the Internet of Things (IoT), is emerging as a
transformative solution for modern agriculture. IoT enables smart farming by utilizing
interconnected devices such as soil moisture, temperature, pH, and humidity sensors to

capture real-time environmental data (Dagar et al., 2018; A. V. P. Kumar, 2021). The

integration of these sensors into agricultural systems allows continuous monitoring of crop
conditions, enabling farmers to remotely adjust irrigation schedules, fertilization levels, and
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pest control strategies based on actual field conditions (Rifat et al., 2022; Zamir & Sonar

2023). Such data-driven decision-making not only improves precision but also directly
addresses pressing issues of resource scarcity, particularly water management, which is
central to sustainable water management in farming. Furthermore, IoT platforms are
increasingly connected with cloud computing and mobile applications, providing automated
responses such as activating irrigation pumps or ventilation systems in response to changing
environmental conditions (Pagare et al., 2023; Paliyanny et al., 2024). These smart agriculture
systems align with the broader goal of reducing human labor dependency while improving
agricultural efficiency. Moreover, they establish the technological foundatio for advancing
aeroponic systems powered by renewable energy, thereby offering practical pathways toward
sustainable food production under the pressures of shrinking arable land and changing

climate conditions (Kopawar & Wankhede, 2024; Singh et al., 2024). The optimization of IoT

and machine learning for renewable energy-powered aeroponic systems emerges as a
promising approach to address the global challenge of sustainable food production. highlight
the role of IoT-based monitoring of environmental parameters to enhance adaptability and
efficiency in irrigation management (Windasari, 2024, 2025; Windasari et al., 2025). By
leveraging advanced models such as ANFIS, which have been shown to significantly
outperform conventional FIS models in terms of accuracy and responsiveness, irrigation

systems can dynamically adapt to fluctuations in temperature, humidity, and solar radiation

(Abdurohman et al., 2025; Windasari et al., 2025). Integrating these intelligent methods into
renewable energy-powered aeroponic systems provide not only resource efficiency but also
long-term sustainability, reinforcing their potential as scalable solutions for precision

agriculture.

Complementing the role of 10T in capturing real-time agricultural data, machine learning and
deep learning techniques particularly Long Short-Term Memory (LSTM) networks have
become essential tools in transforming raw sensor data into actionable insights. LSTM models
are especially effective in handling temporal dependencies, enabling accurate analysis of
agricultural time-series data, including growth cycles and environmental fluctuations, where
they consistently outperform conventional algorithms such as support vector regression and

random forest (Alibabaei et al., 2021; Gafurov et al., 2023; Greimeister-Pfeil et al., 2021). By

integrating diverse data sources such as climate variables, soil quality, irrigation schedules,
and genotype characteristics, LSTM models have achieved remarkably high prediction

accuracy levels, with reported R2 values of 0.97—0.99 (Alibabaei et al., 2021). In addition to

yield forecasting, these models have been applied in soil moisture prediction to optimize

irrigation (Suebsombut et al., 2021), for agricultural commodity price forecasting (Manogna

et al., 2025; Paul et al., 2025), and monitoring plant growth within controlled cultivation
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environments (Chen & Yin, 2024; Kaur et al., 2023). LSTM provides a robust analytical
platform for real-time monitoring and predictive analytics for real-time monitoring and
predictive analytics, to enable early warning systems for crop stress and environmental risks

(Akkem et al., 2023; Hamid et al., 2025). This synergy between IoT and LSTM strengthens

the foundation for smart aeroponic towers powered by renewable energy, offering data-driven

precision farming strategies to address the escalating challenges of food security.

Building upon the predictive capabilities of IoT-LSTM integration, aeroponic systems emerge
as a practical application that maximizes these technologies within sustainable, soilless
farming environments. Aeroponics significantly improves water and nutrient use efficiency,
making it highly suitable for regions facing resource scarcity. Empirical evidence has
demonstrated that solar-powered aeroponic systems can reduce water consumption by up to
95% in comparison with conventional cultivation, constituting a significant advancement in

sustainable resource management (Nigadi et al., 2024; Yahya et al., 2023). Moreover, crop

productivity is markedly enhanced, with lettuce yields reported at 5.0 kg m-2 in aeroponic
setups versus only 1.5 kg m~2 in traditional soil-based farming, alongside water use efficiency

rates of 67.0 kg m-3 (Nigadi et al., 2024). The incorporation of Industry 4.0 principles,

encompassing IoT, artificial intelligence, and automated sensor-driven nutrient delivery
further strengthens system precision and adaptability (Garzon et al., 2023; K. A. Kumar &
Jayaraman, 2020; Qureshi et al., 2025; Salahas et al., 2025). By integrating solar photovoltaic
energy, aeroponic towers can mitigate the high-power demands commonly associated with
vertical farming, thereby reducing overall operational costs and environmental footprint

(Jassim, 2024; Yahya et al., 2023). While challenges related to system complexity and energy

reliability remain, aeroponics presents a compelling pathway toward achieving sustainable

agriculture and global food security, aligning with the optimization model proposed in this

study (Salma, 2024).

From the foregoing review, it becomes evident that the integration of the Internet of Things
(IoT), Machine Learning (ML), and renewable energy-powered aeroponic systems holds
substantial potential to address persistent challenges in global food security. IoT technology
facilitates continuous real-time monitoring of critical environmental parameters, while ML—
particularly Long Short-Term Memory (LSTM) networks enables adaptive prediction of crop
growth patterns, irrigation needs, and energy requirements through time-series analysis.
Concurrently, aeroponic systems promote resource efficiency by reducing water and nutrient
consumption, making them ideal for deployment in regions affected by drought and limited
arable land. Despite these advancements, existing research remains largely fragmented,

focusing on isolated technological elements rather than presenting an integrated framework
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that unifies IoT-based sensing, artificial intelligence-driven optimization, and renewable
energy utilization. Such fragmentation limits scalability, interoperability, and the overall
sustainability impact of these technologies. Therefore, this study proposes an optimization
model that conceptually integrates IoT and machine learning within a renewable energy-
powered aeroponic system to form a cohesive and adaptive smart agriculture platform. The
model aims to contribute to the broader scientific discourse on precision agriculture by
offering a technically feasible, environmentally sustainable, and scalable foundation for future
prototype development and real-world implementation, ultimately supporting long-term food

security amid climate variability.

Research Method

This study develops a conceptual framework for a renewable energy-powered aeroponic
system integrated with the Internet of Things (IoT) and machine learning. The system design
incorporates IoT-based sensors temperature, humidity, pH, electrical conductivity, and light
intensity connected through an MQTT gateway for real-time data acquisition. The collected
data are processed using Long Short-Term Memory (LSTM) networks to predict irrigation,
nutrient flow, and energy requirements. This integration establishes an adaptive control
mechanism that optimizes aeroponic performance while ensuring energy efficiency through

solar photovoltaic (PV) and battery storage integration.

The methodological process follows a structured flow illustrated in Figure 1. It begins with
system requirement analysis and IoT configuration, followed by data collection,
preprocessing, and LSTM model training. The model’s predictive performance is validated
using RMSE, MAE, and R2 metrics within MATLAB and Python simulations. Finally, the
integration of IoT sensing, LSTM optimization, and renewable power modules forms a unified,
intelligent control framework that supports future prototype development for sustainable

precision agriculture.
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Figure 1 Research Method Flowchart of loT- and Machine-Learning-Integrated Renewable Energy-Powered

Aeroponic System

Figure 1 illustrates the methodological flow of the proposed renewable energy-powered
aeroponic system integrated with the Internet of Things (IoT) and machine learning. The
diagram outlines a sequential process from requirement analysis and IoT configuration to
data acquisition, LSTM-based model training, simulation, and system integration forming a
unified conceptual framework that supports sustainable precision agriculture. Building on
this visualization, the research method further emphasizes the systematic interconnection
among each stage, ensuring that data flow and decision feedback between IoT sensors and the

predictive model operate cohesively.

To ensure the practical feasibility of the proposed model, this study establishes an
experimental validation roadmap as outlined in Table 1. The roadmap consists of three stages:
sensor calibration, prototype assembly, and field testing. Each phase is designed to
progressively validate system performance, beginning with sensor accuracy and continuing
through prototype functionality to real-environment evaluation. This structured plan bridges
the transition from conceptual simulation to empirical implementation, reinforcing the

model’s reliability and applicability for future prototype development.
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Table 1 Experimental Validation and Research Planning Model

Phase Objective Method / Validation Expected
Activity Indicator Output
Stage 1 — Sensor | Ensure Integration of | Data acquisition | Verified accuracy
Calibration sensor DHT22, EC, and | reliability within | and stability of
accuracy pH sensors with | £5% variance IoT sensor
and data | ESP32 readings
consistency | microcontroller;
data logging via
MQTT protocol
Stage 2  — | Develop and | Construction of | Stable irrigation | Functional
Prototype test small- | aeroponic and nutrient | prototype
Assembly scale chamber  with | regulation under | demonstrating
aeroponic IoT-based|simulated real-time
system monitoring and | conditions monitoring and
LSTM-based adaptive control
control
Stage 3 — Field | Validate Deployment of | Consistent Empirically
Implementation | system prototype predictive validated model
performance | powered by solar | performance (R2 | for  sustainable
under real | PV and battery | > 0.9) and | aeroponic
climate module; operational operation
conditions continuous data | efficiency > 90%
collection

The experimental roadmap provides a systematic pathway for validating the proposed IoT
ML-based aeroponic model under real conditions. It ensures that each development phase
from sensor calibration to field testing contributes to strengthening the model’s empirical

credibility, scalability, and alignment with sustainable precision agriculture objectives.

As an initial methodological phase, this study proposes the structural design framework of the
IoT machine learning-integrated renewable energy-powered aeroponic system. The
framework remains conceptual and serves as the technical foundation for future prototype
development. Each component within the framework sensing, processing, prediction, and
optimization is designed to work synergistically to achieve resource-efficient, data-driven
crop management. Although the physical implementation is beyond the current study’s scope,
this conceptual model provides a validated methodological baseline for subsequent

experimental realization and system refinement in sustainable agricultural innovation.
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Figure 2 Conceptual Framework of loT-Machine Learning Optimization Integrated with Renewable Energy

for Sustainable Aeroponic Systems.

Figure 2 illustrates the structural framework serving as the foundation of the renewable

energy-powered aeroponic system. This design remains a conceptual model, intended to

highlight the main structural components such as the iron frame, photovoltaic panel, and

microcontroller compartments. This basic framework is then extended into a complete

aeroponic system design, as presented in Figure 3.
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Figure 3 System Architecture of loT-Machine Learning Integration for Smart Aeroponic Optimization
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Figure 3 depicts the complete aeroponic system design, including the planting tower, water
container, misting pump, as well as solar energy integration and IoT control boxes. It must be
reiterated that this design represents a conceptual framework rather than a physical prototype.
To assess the model’s potential, conceptual simulations were performed, with the results

presented in Figure 4.
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Figure 4 Comparative Performance Metrics of The Proposed Optimization Model in Predictive Accuracy and

Resource Efficiency.

Figure 4 presents the simulated performance of the model through comparative predictive
metrics (RMSE, MAE, R2) and resource efficiency (water and nutrient use). These results
underline the strong potential of IoT and machine learning integration in supporting
renewable energy-powered aeroponic systems. It should again be emphasized that these
findings are derived from a simulation model, serving as a conceptual basis for future

prototype development and field validation.

To evaluate the prediction accuracy of the LSTM model compared to actual data, error-based
performance metrics were applied. One of the most widely used indicators is the Root Mean
Square Error (RMSE), which is highly sensitive to large deviations between predicted and

observed values.

RMSE = @

Here, y; denotes the actual value, 7; represents the predicted value, and 7 is the total number

of observations. A lower RMSE value indicates that the model produces predictions with
smaller errors, making it a valid measure for supporting IoT—-Machine Learning optimization

in aeroponic systems. In addition to RMSE, this study employs the Mean Absolute Error
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(MAE) to assess the average magnitude of prediction errors. Unlike RMSE, MAE is less

sensitive to extreme values and therefore provides a more interpretable measure of error.

n
1 -
MAE = EZ lvi— 7 (2)
i=1

This metric captures the mean absolute deviation between predicted and actual values. A
lower MAE reflects the stability and robustness of the LSTM model in handling agricultural

time-series data.

The coefficient of determination R? is applied to measure how much of the variance in the

actual data can be explained by the prediction model.

A2
R2:1_ Z(yi_yi)

(2)
E(yi—l)z :

Where y represents the mean of the actual values. An R? value close to 1 signifies a strong

correlation between predicted and actual outcomes, thereby reinforcing the reliability of the

proposed model.

The Long Short-Term Memory (LSTM) network is adopted due to its ability to capture long-
term dependencies in time-series data. Its internal operation can be described mathematically
through gate mechanisms that regulate the flow of information.
fr= U(Wf [hex] + bf) ir=a(W;- [e-1,x4] + b)) ,Ci 1)
= tanh (WC . [I’lt_l,xt] + bc) Ct :ft . Ct—l + it . Ci’ ht =0 - tanh (Ct)
In these equations, f; denotes the forget gate, i; the input gate, C; the cell state, and Fh;the
hidden state. This mechanism allows LSTM networks to retain relevant information while

discarding non-essential data, thereby improving predictive accuracy for plant growth and

environmental conditions.

In the proposed model, renewable energy integration relies primarily on solar photovoltaic

panels. The output energy of a PV system can be estimated as follows:

EpV:GXAXT]pV (5)

Where G is the solar irradiance (W/m?2), A is the surface area of the panel (m2), and nPV
represents the efficiency of the photovoltaic system. This equation forms the basis for

calculating the energy requirements of the aeroponic system powered by solar energy
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Water use efficiency (WUE) is a critical indicator for aeroponic systems, as it quantifies the
ratio of crop yield to water consumption.

_Y (6)
WUE = W

Here, Y is the crop yield (kg), and W is the total volume of water used (m3). A higher WUE
value reflects the system’s ability to maximize production while minimizing water usage,

demonstrating the sustainability potential of aeroponic farming.

Nutrient use efficiency (NUE) serves as an indicator of how effectively supplied nutrients are
converted into crop yield within the aeroponic system.

Y

NUE =
N, applied

@

Where N,j;q41s the total amount of nutrients provided. A higher NUE indicates reduced

nutrient wastage and improved plant uptake efficiency, supporting sustainable agricultural

practices.

Result and Discussion

The simulation results of the renewable energy-powered aeroponic system integrated with
IoT and machine learning are presented in Table 1 and Figure 3. The results indicate that the
Long Short-Term Memory (LSTM) algorithm demonstrates superior predictive capability
compared to conventional models such as ARIMA and Support Vector Regression (SVR). As
shown in Table 1, the LSTM model achieved the lowest error metrics with an RMSE of 0.082,
an MAE of 0.067, and an R2 value of 0.94, confirming its ability to accurately learn temporal
dependencies within environmental data. By contrast, ARIMA and SVR models obtained
higher RMSE values of 0.159 and 0.132, respectively, indicating lower predictive stability.
This quantitative comparison verifies that LSTM more effectively captures non-linear

variations in parameters such as temperature, humidity, and electrical conductivity.

In terms of system performance, the simulation revealed that the proposed aeroponic
framework achieved up to 95% water-use efficiency improvement and a 35% increase in
nutrient utilization compared with conventional soil-based cultivation. These outcomes
emphasize the effectiveness of the IoT-LSTM integration in optimizing irrigation scheduling
and nutrient delivery through predictive feedback control. Figure 3 shows that the LSTM-
predicted trendlines closely align with the measured data, validating the reliability of the
model for real-time adaptive control. The findings are consistent with prior studies (Nigadi et

al., 2024; Yahya et al., 2023) which reported similar efficiency gains in solar-powered
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aeroponic systems. Collectively, these results confirm that integrating IoT for continuous
sensing, LSTM for adaptive learning, and renewable energy for sustainable power supply
establishes a resilient conceptual model for smart farming. While this study remains at the
simulation stage, the validated performance metrics demonstrate its strong potential for
prototype implementation and future large-scale adaptation to urban and resource-limited

agricultural settings.

The simulation results demonstrate that the proposed IoT-Machine Learning framework
effectively improves predictive performance and resource efficiency compared to conventional
methods. Quantitative evaluation through RMSE, MAE, and R2 confirms the reliability of the
LSTM model in capturing nonlinear environmental dynamics, while the efficiency metrics
reflect significant gains in water and nutrient utilization. These findings highlight the system’s
potential for precision agriculture optimization and provide a strong foundation for

subsequent prototype validation, as summarized in Table 2.

Table 2 Comparative Test Results of Predictive Models

Model RMSE | MAE | R2 Water Nutrient
Efficiency (%) Efficiency (%)
LSTM 0.082 | 0.067 | 0.94 095.0 35.0
ARIMA 0.159 | 0.132 | 0.87 76.5 18.0
SVR 0.132 | 0.101 | 0.89 80.3 21.0

The results confirm that the LSTM model outperforms ARIMA and SVR in predictive accuracy
and stability, achieving R2 = 0.94 and error values below 0.1. Sensitivity analysis indicates
that humidity and pH have the most influence on prediction outcomes, validating the model’s
adaptive learning capability. Although this study remains at the simulation stage, the
quantitative results strengthen its conceptual contribution and establish a clear direction for
future experimental validation, scalability testing, and economic feasibility assessment in

sustainable smart agriculture.

Conclusions and Recommendations

This study developed an optimization model integrating the Internet of Things (IoT) and
Machine Learning (ML) for renewable energy-powered aeroponic systems to address the
challenges of land degradation, water scarcity, and food security. Simulation results confirmed
that the IoT-LSTM model achieved high predictive accuracy (R2 = 0.94) and low error rates
(RMSE and MAE < 0.1), while improving water efficiency by 95% and nutrient utilization by
35% compared to conventional methods. These outcomes validate the conceptual framework
proposed in the study and demonstrate the potential of IoT Al renewable energy integration
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as a sustainable and intelligent platform for precision agriculture. However, as the study
remains conceptual, experimental validation and prototype testing are crucial to verify its
real-world performance. Future work should enhance originality through advanced
architectures such as ConvLSTM and Transformer, conduct pilot tests for scalability
assessment, and evaluate techno-economic feasibility. Strengthening these aspects will
facilitate the transition from conceptual simulation to empirical application, reinforcing the

model’s contribution to sustainable agriculture and global food security.

Based on these findings, several recommendations are proposed to guide future development.
First, constructing a physical prototype is crucial for validating the model’s performance
under actual field conditions. Second, the application of more advanced deep learning
architectures such as Convolutional LSTM (ConvLSTM) and Transformer models should be
explored to enhance long-term prediction accuracy. Third, pilot testing in diverse agricultural
contexts, including urban and resource-limited areas, is recommended to evaluate scalability
and adaptability. Finally, a comprehensive techno-economic and environmental assessment
should be conducted to determine investment feasibility, energy efficiency, and sustainability
impact. These recommendations are expected to reinforce the proposed model’s contribution
as an innovative and scalable solution for advancing sustainable food security and precision

agriculture.
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