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Abstract: This study investigates the optimization of coal fly ash composition as a filler in
Silicone Rubber (SiR) insulator materials, aiming to enhance their dielectric characteristics.
Compositional optimization was achieved by evaluating and comparing three advanced meta-
heuristic algorithms Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Ant
Colony Optimization (ACO), using the Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) as performance metrics. The utilized fly ash, containing dominant
silica, alumina, and iron oxides, was directly incorporated into the SiR matrix. Results indicate
that, compared to PSO, GA and ACO exhibited superior performance and consistency.
Specifically, for Relative Permittivity, the optimal composition of 80% yielded the lowest errors
with GA and ACO (RMSE = 0.0751; MAPE = 0.9044). For Hydrophobicity, these two
algorithms showed superior accuracy in the RMSEmetric (RMSE = 0.8883) at 15.39% loading.
These findings underscore the scientific contribution of this study by establishing the superior
reliability of GA and ACO for optimizing fly ash composition in SiR, thus providing a robust
analytical methodology to advance the use of industrial waste for high-performance dielectric
materials.
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Introduction
Indonesia, rich in natural resources, heavily relies on coal to fuel its Steam Power Plants
(PLTU) (Asof et al., 2022). This extensive coal consumption generates a significant volume of
solid waste, primarily fly ash and bottom ash. Data from 2022 estimated that this waste
production reached 12 million tons in 2021 and is projected to climb to 16.2 million tons by
2027. This continuous accumulation threatens environmental pollution, particularly since
coal fly ash contains several toxic heavy metals, such as Pb, Cd, As, and Hg, which can easily
dissolve into soil and water (Abinawa & Gobel, 2024; Anggara et al., 2023).

Despite these environmental concerns, the chemical content of fly ash, which varies based on
the coal's energy value and burning process, is generally rich in silica, alumina, iron, calcium,
and various oxides. Nanosilica, one of its primary components, is highly beneficial as a filler
in polymer materials like EPDM and Silicone Rubber (SiR). The inclusion of nanosilica is
critical not only for boosting the material's mechanical strength (tensile strength) but,
crucially, for improving the dielectric capability (electrical insulation performance) of polymer
composites (Christiono et al., 2023; Fikri et al., 2024; Garniwa et al., 2024; Kar, 2021).

Previous research has explored the use of fly ash in this context. Earlier experimental studies,
such as those titled "Electrical and Mechanical Properties Of Fly Ash Filled Silicone Rubber
For High Voltage Insulator" and "Effect Of Fly Ash Filler To Dielectric Properties Of The
Insulator Material of Silicone Rubber And Epoxy Resin", examined the impact of fly ash
concentration on the electrical and mechanical performance of silicone rubber (Kitta et al.,
2016; Manjang et al., 2015). More recently, research titled "Optimization of Dielectrics in
Silicone Rubber Polymer Insulators using Coal Fly Ash Waste Filler" utilized quadratic
regression analysis to determine the optimal fly ash composition, finding an optimal
composition of 20.69% for hydrophobicity and 80% for relative permittivity (Thahara et al.,
2023).

The existing literature primarily relies on conventional regression analysis to identify optimal
filler compositions, which often provides only a local optimum and lacks the robustness
needed for complex, non-linear polymer composite models. Therefore, the novelty of the
current research lies in its advanced analytical methodology for determining the optimal filler
composition. We employ and compare three sophisticated meta-heuristic optimization
algorithms—Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Ant Colony
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Optimization (ACO) —to overcome the limitations of conventional methods. Comparing these
algorithms is crucial because it provides a definitive, performance-based recommendation of
the most suitable, globally searching computational tool for optimizing fly ash composition in
SiR. This comparative study, utilizing advanced, heuristic search mechanisms, fills a
significant research gap by determining which algorithm (GA, ACO, and PSO) offers the
highest accuracy and stability in predicting the dielectric performance of this sustainable
composite material. The effectiveness of these optimization algorithms will be rigorously
measured using performance metrics such as Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE).

Research Method
Material Preparation and Testing
Raw Material Preparation
The fly ash used in this research was sourced from the Suralaya Steam Power Plant (PLTU)
located in Cilegon, Banten. The preparation process began with drying the fly ash, which was
then sifted using a 200-mesh sieve to achieve a uniform particle size. Fly ash that successfully
passed the 200-mesh sieve was collected and analyzed using X-Ray Fluorescence (XRF). The
XRF test serves to detect the chemical elements and determine the percentage of each element
within the fly ash sample. This analysis was conducted at the Advanced Chemical
Characterization Laboratory at BRIN (National Research and Innovation Agency) in South
Tangerang, Banten.

Sample Mixing and Hardening
The coal fly ash was mixed with Silicone Rubber (SiR) RTV 683 (produced by PT Mapel
Chemical). Critically, the fly ash was used without separating its mineral content. The mixing
was done manually, and the mixture was poured into a 2 mm thick mold. A vacuum process
was then applied to remove any air bubbles resulting from the mixing. Finally, the composite
material underwent a hardening process for 24 hours to solidify the mixture.

Material Performance Testing Rationale
The integrity and reliability of the experimental results were ensured through replication. For
each of the nine distinct fly ash composition levels (ranging from 0% to 80% as listed in Table
1), three replicate specimens were fabricated and tested for both Hydrophobicity and Relative
Permittivity. Therefore, the reported performance metrics (contact angle and permittivity) for
each composition level represent the average value obtained from the three replicate
measurements. This procedure, which utilizes a total of 27 test specimens (9 compositions ×

3 replications), minimizes the impact of potential inconsistencies during the manual sample
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preparation and testing stages, thus significantly enhancing the statistical reliability and
reproducibility of the final data set used for the subsequent optimization algorithms.

Table 1 The samples with varying percentages of fly ash content
Number Sample Code Fly Ash Percentage

1 SF0 0%
2 SF1 10%
3 SF2 20%
4 SF3 30%
5 SF4 40%
6 SF5 50%
7 SF6 60%
8 SF7 70%
9 SF8 80%

Material Performance Testing
Two main tests were conducted to evaluate the composite material's performance, with all
measurements replicated three times per sample to ensure data reliability:

Hydrophobicity Test: This test measures how effectively the material's surface repels
water, which is crucial for preventing water films, damage, and dirt buildup (Abdillah, 2024).
The test was performed bymeasuring the static contact angle under strictly controlled ambient
conditions (26°C and 85% humidity) after cleaning the surface with ethyl alcohol. A sterile
water droplet (20μL) was placed on the surface, and its image was analyzed using ImageJ
software. A high-resolution Contact Angle Meter was used for measurement.

Prior to all measurements, the Contact Angle Meter used was verified and calibrated using a
high-precision standard calibration sphere with a known contact angle. The goniometer
system's image analysis component, utilizing ImageJ software, underwent comprehensive
external validation. This validation directly leveraged themethodology established by (Chalise
et al., 2023), in the study titled "A low-cost goniometer for contact angle measurements using
drop image analysis: Development and validation". This rigorous benchmarking
demonstrated high performance, with the contact angle measurements on inorganic samples
achieving an impressive average accuracy exceeding 94% when benchmarked against the
gold-standard commercial goniometer (ramé-hart). This outcome unequivocally establishes
ImageJ as a reliable and robust image analysis solution for surface science applications,
justifying its use in quantifying the hydrophobicity of the SiR composite samples.

Relative Permittivity Test (Dielectric Constant): This test assesses thematerial's ability
to store electrical energy (Thahara et al., 2023). The composite material (fly ash/SiR) was
placed between parallel plates, and its capacitance was measured at a frequency of 800 Hz,
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also under controlled conditions (26°C and 85% humidity). A precision LCR meter was used
for capacitance measurement.

The LCR Meter used for capacitance measurement was subjected to a strict calibration
protocol to minimize instrumental error and ensure high data fidelity. This protocol included
Open, Short, and Load (OSL) correction performed at the operating frequency of 800 Hz.
Specifically, Open compensation nullified stray capacitance by disconnecting the parallel
plates, while short compensation eliminated residual impedance by connecting the plates.
Furthermore, the meter’s accuracy was regularly verified using a set of precision standard
capacitors with traceable values. This rigorous calibration, coupled with the effective
mitigation of systemic errors throughmeticulous circuit engineering, results in the LCRMeter
achieving a very high measurement accuracy, demonstrating an overall error of less than 1%,
thereby ensuring the reliability of the calculated relative permittivity in the dielectric analysis
(Akhmetov et al., 2023).

The selection of Hydrophobicity (static contact angle) and Relative Permittivity (dielectric
constant) as the primary evaluation properties is based on their fundamental importance for
high-voltage insulator applications. Hydrophobicity is critical because it quantifies the
material's ability to repel water, preventing the formation of conductive water films that lead
to leakage current, flashover, and premature insulator failure in humid or polluted
environments. Meanwhile, Relative Permittivity directly measures the material's ability to
store electrical energy under an electric field. A low, stable relative permittivity is essential for
efficient insulation and reducing unwanted charging effects. Optimizing both properties
simultaneously ensures that the resulting SiR composite not only possesses excellent electrical
storage capacity (dielectric strength) but also superior surface protection against
environmental degradation, making them the defining characteristics of a high-performance
electrical insulator (Diantari et al., 2024; Poluektova et al., 2025).

Optimization Methods
The optimization process compares three meta-heuristic algorithms: Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), and Ant Colony Optimization (ACO).

Particle Swarm Optimization (PSO)
PSO is an algorithm inspired by the social behavior of flocks of birds or schools of fish and is
effective for complex optimization problems. The process involves two main steps: velocity
update and position update. The simulation parameters were set to 30 particles and 50
iterations, adopted from similar studies in the literature. The stopping criterion was reaching
the maximum iteration count (50). The particle's new velocity is updated based on its own
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best position found so far (𝑝𝑏𝑒𝑠𝑡) and the best position found by the entire swarm (𝑔𝑏𝑒𝑠𝑡)

(Mufliq et al., 2024; Putry et al., 2024).

𝑣𝑖 𝑡 + 1 = 𝜔 . 𝑣𝑖 𝑡 +  𝑐1 . 𝑟1. 𝑝𝑏𝑒𝑠𝑡𝑖 𝑡 −  𝑥𝑖 𝑡 +  𝑐2 . 𝑟2 . (𝑔𝑏𝑒𝑠𝑡 𝑡 −  𝑥𝑖 𝑡 ) (1)

Where 𝜔 (inertia factor) was set to 0.8, 𝑐1 (cognitive Coefficient) and 𝑐2 (social coefficient) were
set to standard values, controlling the particle's tendency towards its own best position and
the swarm's best position, respectively. The position update is calculated by adding the newly
calculated velocity to its previous position (Qaraad et al., 2024).

𝑥𝑖 𝑡 + 1 =  𝑥𝑖 𝑡 +  𝑣𝑖 (𝑡 + 1) (2)

Genetic Algorithm (GA)
GA is an optimization method that mimics the principles of natural selection found in
evolution theory. It searches for the optimal value of the fly ash composition (Khosravi &
Bahram, 2025). The objective function, 𝐹(𝑥), which is minimized or maximized, is defined by
the predictive polynomial mathematical model (𝑓(𝑥)) that represents the relationship between
the input variable (fly ash composition, 𝑥) and the response variable (performance value, 𝑌).
The standard parameters for GA were implemented (initial population of 50, maximum
generations of 100, and a crossover fraction of 0.8). The function is defined as:

𝐹 𝑥 = 𝑓 𝑥 (3)

Ant Colony Optimization (ACO)
ACO is an artificial intelligence method based on the behavior of ants finding the shortest path
to food, where ants leave pheromone trails to guide the colony toward the optimal solution. In
this study, ACO utilized a set of specific parameters to effectively navigate the solution space
(Yılmazer &Özel, 2024). The simulationwas runwith 30 ants and amaximumof 50 iterations.
Furthermore, the archive size (the number of best solutions stored) was set to 30. The search
mechanism is based on the Gaussian Kernel probability density function (pdf), which models
the attractiveness of the solutions:

𝑤𝑗 = 1

𝑞𝜎 2𝜋
𝑒

−(𝐺 𝑗 −𝜇)2

2𝑞2𝜎2 (4)

Where the specific parameters tuned for this model were the scaling parameter (𝑞) for the
deviation, which was set 1 × 10−4, and the weighting factor used in calculating the standard
deviation (𝜎), which was set to 1. These parameter settings were adopted from standard
implementations in meta-heuristic optimization literature and were tuned to ensure rapid
and stable convergence toward the optimal fly ash compositionwithin the defined constraints.
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Optimization Performance Evaluation and Data Validation
The optimization process utilized the polynomial regression models derived from the
experimental data as the fitness function for the meta-heuristic algorithms. To ensure model
robustness and avoid overfitting, a k-fold cross-validation approach was implemented on the
input data before the final optimization run. The quality of the optimization algorithms is
measured using two key evaluation metrics:

Root Mean Square Error (RMSE)
RMSE is the square root of the average of the squared differences between the predicted values
(ŷ𝑖) and the actual values (𝑦), Criteria: A smaller RMSE value indicates a better-performing
model with a smaller error (Wiranata & Calvinus, 2025).

𝑅𝑀𝑆𝐸 =  
∑𝑁

𝑖=1 (𝑦𝑖 − 𝑦)2

𝑁
(5)

Mean Absolute Percentage Error (MAPE)
MAPE measures the level of error as a percentage, by calculating the average of the absolute
percentage difference between the predicted and actual values. A smaller MAPE value
indicates a more accurate prediction model (Fikri et al., 2025; Nuraini et al., 2025).

𝑀𝐴𝑃𝐸 =  1
𝑁

𝑁

𝑖=1

𝑌𝑖 − 𝑌𝑛
𝑌𝑖

(6)

Result and Discussion
Fly Ash and Silicone Rubber Characteristics
The fly ash tested is solid waste from coal combustion at the Cilegon Steam Power Plant
(PLTU). X-Ray Fluorescence (XRF) analysis confirms that the fly ash is primarily composed
of Silicon Dioxide (SiO2) at 42.00%, Aluminium Oxide (Al2O3) at 27.90%, and Iron Oxide
(Fe2O3) at 12.90%6. Collectively, these three oxides account for over 80% of the total mass.
This composition is typical of Type F fly ash (sub-bituminous type), characterized by lower
carbon content but higher mineral content compared to bituminous coal types.

Table 2 X-Ray Fluorescence (XRF) of Fly Ash result
Element Name Percentage Value

SiO2 42.00%
Al2O3 27.90%
Fe2O3 12.90%
CaO 7.20%
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Element Name Percentage Value

MgO 3.70%
Na2O 2.20%
TiO2 1.20%
SO3 1.00%
K2O 0.80%
P2O5 0.50%
MnO 0.20%
SrO 0.20%
Cl 0.10%
ZrO2 0.10%

The high content of SiO2 and Al2O3 is crucial for composite performance, as these components
act as nanofillers. These oxides directly contribute to the improvement of the electrical
insulation performance (dielectric capability) and mechanical stability of the SiR matrix. The
Silicone Rubber (SiR) used is an elastomer material based on silicon atoms, notable for its
ability to remain stable across a wide temperature range (from -55°C to +300°C). This inherent
stability, combined with the reinforcing effect of the Type F fly ash, significantly enhances the
electrical and mechanical durability of the resulting composite material (Kar, 2021).

Optimization of Hydrophobicity Property
The relationship between the fly ash composition (𝑥) and the Hydrophobicity value (𝑓 𝑥 ) is
modeled using the following polynomial equation:

𝑓 𝑥 = − 2.1186 × 10−6𝑥4 + 0.00038182𝑥3 − 0.023677𝑥2 + 0.48841𝑥 + 102.49 (7)

Table 3 Hydrophobicity Optimization Results
Type of Optimization

Algorithm
Composition

(%)
Measured
Value (𝑓 𝑥 )

RMSE MAPE

Particle Swarm Optimization (PSO) 20.37% 105.1 1.0405 0.6871
Genetic Algorithm (GA) 15.39% 105.67 0.8883 0.7211
Ant Colony Optimization (ACO) 15.39% 105.67 0.8883 0.7211

The optimization results show that GA and ACO identified an identical optimal composition
of 15.39%. Crucially, both algorithms achieved a significantly lower Root Mean Square Error
(RMSE = 0.8883) compared to PSO (RMSE = 1.0405). The lower RMSE for GA and ACO
suggests that the models predicted by these two methods have a smaller average magnitude
of error, demonstrating superior consistency in predicting the optimal hydrophobicity.
Although PSO yielded a slightly better Mean Absolute Percentage Error (MAPE), the robust
RMSE performance of GA and ACO validates their superior capability in avoiding large
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prediction deviations. This optimal value (15.39%) aligns closely with previous experimental
findings which suggested an optimal range around 20% for hydrophobicity enhancement.

Optimization of Relative Permittivity Property
The relationship between the fly ash composition (𝑥) and the Relative Permittivity value
(𝑓 𝑥 ) is modeled using the following polynomial equation:

𝑓 𝑥 =− 24049 × 10−7𝑥4 + 0.000048169𝑥3 − 0.0031865𝑥2 + 0.08742𝑥 + 5.0643 (8)

Table 4 Relative Permittivity Optimization Results
Type of Optimization

Algorithm

Optimal Composition Evaluation Value

Composition
(%)

Measured
Value (𝑓 𝑥 )

RMSE MAPE

Particle Swarm Optimization (PSO) 80% 6.534 0.0971 1.5512
Genetic Algorithm (GA) 80% 6.476 0.0751 0.9044
Ant Colony Optimization (ACO) 80% 6.476 0.0751 0.9044

For Relative Permittivity, all three algorithms converged on the highest tested composition,
80%. However, the performance difference was highly significant. GA and ACO demonstrated
vastly superior prediction accuracy, yielding substantially lower RMSE (0.0751) and MAPE
(0.9044) compared to PSO (RMSE = 0.0971; MAPE = 1.5512). This dramatic difference
suggests that PSO became trapped in a local minimum or exhibited slower convergence
behavior when dealing with the complexity of the relative permittivitymodel, leading to higher
overall prediction errors. In contrast, GA (utilizing genetic operators like crossover and
mutation) and ACO (relying on robust probabilistic selection from an archive of best solutions)
demonstrated stronger global search capability, allowing them to navigate the solution space
more effectively and map the polynomial model with high precision. The optimal composition
of 80% is consistent with previous findings for maximizing this property.

Algorithmic Analysis and Synthesis of Optimization Performance
Algorithmic Rationale for Superiority
The vast difference in prediction error metrics (RMSE andMAPE) between PSO and the other
two algorithms requires an explanation rooted in their search mechanisms. The Genetic
Algorithm (GA), through its evolutionary operators (specifically crossover and mutation),
excels at conducting strong global exploration. These operators enable the algorithm to
generate fundamentally new solutions far from the current population, making it highly
effective at escaping local minima and discovering the true global optimum across the
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complex, non-linear polynomial search space. Similarly, Ant Colony Optimization (ACO),
particularly in its continuous form used here, relies on a probabilistic sampling mechanism
centered around an archive of elite solutions. This mechanism, guided by pheromone-like
weighting, inherently facilitates a balance between exploration (global search) and
exploitation (local refinement).

In contrast, the standard Particle Swarm Optimization (PSO) algorithm, which relies on
particle velocity updates driven solely by personal best (𝑝𝑏𝑒𝑠𝑡) and global best (𝑔𝑏𝑒𝑠𝑡) positions,
tends to prioritize exploitation (local search) around the known optimal points. While efficient
for unimodal functions, this focus makes PSO highly susceptible to becoming prematurely
trapped in local minima when navigating multimodal or complex search landscapes like the
one modeled here (Equations 7 & 8). The significant high error values recorded by PSO,
despite utilizing comparable iterations and particles to ACO, strongly suggest a minimal local
escaping capability during the optimization of the Permittivity model, confirming the superior
performance of GA/ACO is due to their inherent stronger global search strategies and better
convergence behavior.

Synthesis of Algorithmic Performance
The comparative analysis across both dielectric properties confirms the superior reliability
and predictive consistency of the Genetic Algorithm (GA) and Ant Colony Optimization (ACO)
over Particle Swarm Optimization (PSO). While PSO is computationally efficient, its relatively
poor performance in terms of error metrics (especially MAPE for permittivity) suggests that
its typical local search mechanism was less effective than the global exploration strategies
inherent in GA and ACO. The consistent results generated by GA and ACO, often yielding
identical optimal compositions and error values, strongly recommend their use for future
compositional optimization problems in SiR polymer composites.

Conclusions
This study successfully determined the optimal fly ash filler compositions in Silicone Rubber
(SiR) for enhancing dielectric performance by conducting a rigorous comparative evaluation
of three meta-heuristic algorithms: Particle Swarm Optimization (PSO), Genetic Algorithm
(GA), and Ant Colony Optimization (ACO). Based on the performance metrics, the Genetic
Algorithm (GA) and Ant Colony Optimization (ACO) were consistently found to be the most
reliable and effective optimization methods, exhibiting superior consistency in minimizing
prediction errors across the material properties. This superiority was particularly evident in
the optimization of Relative Permittivity, where both GA and ACO achieved the best possible
result at the highest filler concentration tested, confirming that the resulting models offered
the highest accuracy for this critical dielectric characteristic. While the optimization of
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Hydrophobicity presented a more nuanced outcome—with PSO showing a slight advantage in
the relative percentage error—GA and ACO nonetheless remained the recommended choice
due to their overall performance stability and dominance in minimizing average prediction
deviation. The scientific contribution of this work lies in establishing a robust, advanced
analytical methodology that provides a definitive comparison of meta-heuristic search
capabilities for compositional optimization, thereby advancing the field of sustainable
material development through the high-value utilization of industrial waste such as coal fly
ash.
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