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Abstract: Quadrotor unmanned aerial vehicle (UAV) is a typical multi-input multi-output 

(MIMO), nonlinear and strong coupling underactuated system. In the working process of the 

system, it is necessary to perform information fusion on the attitude detected by the sensor to 

achieve accurate measurement of attitude angle and angular velocity. Accurate and efficient 

measurement of UAV attitude angle is the basis of UAV flight control. In this paper, the 

extended Kalman filter (EKF) algorithm is used to estimate the attitude information of the four-

rotor UAV. Firstly, a four-rotor UAV simulation model is established on Simulink in Matlab, 

and then the attitude information of the UAV is measured and estimated. The results show that 

the extended Kalman filter algorithm can effectively estimate the attitude information of UAV. 

Keywords: Four-Rotor UAV, Extended Kalman Filter, Matlab Simulation, Attitude 

Estimation. 

Introduction 

In recent years, multi-rotor UAV has become a research hotspot, the results are widely used 

in meteorological monitoring, low-altitude reconnaissance, light transport and other fields 

(Paw & Balas, 2011). Multi-rotor UAV usually has more than two rotor propellers, with vertical 

take-off and landing, simple structure, high mobility, good safety, easy maintenance. It is an 

unstable strongly coupled system with 6 degrees of freedom and 4 inputs. Therefore, it is very 

useful to improve the stability and controllability of UAV to make it autonomous flight or 

manual guidance. Attitude measurement is an important part of UAV control system. The 

accuracy of attitude measurement system directly affects the control performance. Therefore, 

it is necessary to establish UAV attitude measurement system (T. Zhang & Liao, 2017). In 

recent years, UAV attitude estimation has been studied more mature and widely used 

algorithms are based on Kalman filter (KF) (Hajiyev & Soken, 2013; OUYANG & Zhou, 2014; 

Wu et al., 2011), complementary filtering (Du et al., 2015; Mahony et al., 2008), gradient 
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descent method (Peng et al., 2015) of the Euler Angle method (Zhi-ju et al., 2010), quaternion 

method (Chen et al., 2015; LI et al., 2006), direction cosine matrix method and equivalent 

rotation vector method (Z. Zhang & Duan, 2010). The complementary filtering and gradient 

descent algorithm are simple and suitable for processing aircraft with limited performance. 

Under the condition of hardware performance, KF is mostly used KF is effective and widely 

used, but not suitable for nonlinear systems including UAV flight control system. In view of 

this limitation, there are many extended algorithms based on KF, such as unscented Kalman 

filter (UKF) (Julier et al., 2000), particle filter (PF), extended Kalman filter (EKF). UKF 

algorithm and PF algorithm have the problems of large amount of calculation and poor real-

time performance, while EKF has small data storage and relatively small amount of 

calculation. In summary, EKF is the best choice for data fusion and attitude estimation of four-

rotor UAV. 

Extended Kalman Filter (EKF) was introduced to integrate attitude data from different 

sources, but only simulation results were given. The extended Kalman filter method for 

attitude estimation was analyzed in (Huang et al., 2005) The Gauss-Newton iteration method 

was used to calculate the accelerometer vector and the magnetometer vector as the 

measurement vectors, and the measurement data collected from the sensor was used to test 

the filter. In (Xue et al., 2009), an extended Kalman filter algorithm based on quaternion is 

introduced to improve the accuracy of attitude estimation. The algorithm uses an improved 

Gauss-Newton algorithm. Firstly, the attitude model and attitude dynamics model of UAV are 

established. Then the basic principle of extended Kalman filter algorithm is expounded. 

Finally, the simulation model of UAV is established in Simulink of Matlab, and the 

effectiveness of extended Kalman filter algorithm is verified. The results show that the attitude 

solver designed by EKF algorithm can provide reliable attitude feedback for UAV flight 

control, improve the accuracy of attitude measurement, and meet the needs of UAV attitude 

control. 

 

Research Method 

UAV Attitude Modeling 

Attitude Model 

When studying the flight state of the rotor UAV, the navigation coordinate system (𝑛 system) 

and the body coordinate system (𝑏 system) are mainly used. The navigation coordinate system 

is the northeast coordinate system. The body coordinate system is fixed on the origin of the 

rotorcraft UAV, 𝑂𝑥𝑏 points forward, 𝑂𝑦𝑏 points to the right, 𝑂𝑧𝑏 points down. The roll angle 
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𝜙 of the UAV corresponds to the rotation around the 𝑂𝑥𝑏 axis, the pitch angle 𝜃 corresponds 

to the rotation of the 𝑂𝑦𝑏 axis, and the yaw angle 𝜓 corresponds to the rotation of the 𝑂𝑧𝑏 axis. 

The navigation coordinate system and the body coordinate system of the rotor UAV are shown 

in Figure 1. 

 

Figure 1 Navigation Coordinate System and Fuselage Coordinate System of Rotor UAV 

Euler Angle, direction cosine and quaternion are commonly used positioning methods in 

attitude measurement system. In attitude estimation, the measurement vector of body 

coordinate is transformed into navigation coordinate by coordinate transformation matrix 𝐶𝑏
𝑛. 

In Euler angles, the representation of the transformation matrix 𝐶𝑏
𝑛 is defined as Equation 1 : 

𝐶𝑏
𝑛 = [

cos 𝜙cos𝜓 + sin 𝜙sin 𝜃sin 𝜓 cos 𝜃sin 𝜓 sin 𝜙cos 𝜓 − cos 𝜙sin 𝜃sin 𝜓
−cos 𝜙sin 𝜓 + sin𝜙sin 𝜃cos𝜓 cos 𝜃cos 𝜓 −sin𝜙sin𝜓 − cos𝜙sin 𝜃cos𝜓

−sin𝜙cos 𝜃 sin 𝜃 cos𝜙cos 𝜃
] (1) 

 

Quaternion attitude estimation can reduce the amount of calculation and avoid Euler angle 

singularity problem. The expression of quaternion is 𝑞 = [𝑞0 𝑞1 𝑞2 𝑞3]𝑇. In quaternion, 

the body coordinates can be obtained by continuous rotation transformation of navigation 

coordinates. The inverse matrix of the transformation matrix is its own transpose. The 

quaternion coordinate transformation matrix from navigation coordinates to body 

coordinates is Equation 2 : 

𝐶𝑛
𝑏(�⃗�) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (2) 

 

Combined with Equation 1 and Equation 2, the attitude angle is obtained as follows Eq 3 : 
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{
  
 

  
 𝜃 = arcsin[2(𝑞2𝑞3 − 𝑞0𝑞1)], [−

𝜋

2
,
𝜋

2
]

𝜙 = −arctan [
2(𝑞1𝑞3 + 𝑞0𝑞2)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2] , [−𝜋, 𝜋]

𝜓 = arctan [
2(𝑞1𝑞2 − 𝑞0𝑞3)

𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2] , [−𝜋, 𝜋]

 (3) 

 

In strap down inertial navigation system, the relationship between angular velocity and unit 

quaternion is as follows Equation 4: 

[

�̇�0
�̇�1
�̇�2
�̇�3

] =
1

2

[
 
 
 
 
0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧
𝜔𝑥 0 𝜔𝑧 −𝜔𝑦
𝜔𝑦 −𝜔𝑧 0 𝜔𝑥
𝜔𝑧 𝜔𝑦 −𝜔𝑥 0 ]

 
 
 
 

[

𝑞0
𝑞1
𝑞2
𝑞3

] (4) 

 

Where 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 is the real rotation rate around 𝑥, 𝑦, 𝑧 axis in the body coordinate measured 

by the gyroscope. 

Model of Attitude Dynamics 

The attitude dynamics model of the four-rotor UAV is shown in Figure 2. 

From Euler equation  5 : 

𝑱�̇�𝑏 +𝝎𝒃 × 𝑱𝝎𝑏 = 𝑮𝑎 + 𝜏 (5) 

Where 𝝎𝒃 represents the angular velocity in the body coordinate, and 𝑝, 𝑞, 𝑟 is used to 

represent the three components of 𝝎𝒃on the body axis: 𝜔𝑥, 𝜔𝑦, 𝜔𝑧, that is, [𝑝𝑞𝑟] =

[𝜔𝑥𝑏𝜔𝑦𝑏𝜔𝑧𝑏]; 𝝉represents the torque generated by the propeller on the body axis, including 

the rolling torque 𝜏𝑥 around the 𝑂𝑥𝑏 axis, the pitching torque 𝜏𝑦 around the 𝑂𝑦𝑏 axis, and the 

yaw torque 𝝉𝑧 around the 𝑂𝑧𝑏 axis. 

 

Figure 2 Attitude Dynamics Model of Four-Rotor UAV 
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𝑮𝑎 represents the gyro moment, which is equivalent to a gyro when the motor is rotating at 

high speed. High speed rotating gyro is a very stable individual, with the ability to maintain its 

own axial unchanged. Therefore, if there is an external force to change the direction of the gyro 

shaft, then a gyro torque will be generated to resist this change. The calculation formula of 𝑮𝑎  

is as follows Equation 6: 

𝐺𝑎 = [

𝐺𝑎,𝜙
𝐺𝑎,𝜃
𝐺𝑎,𝜓

] = [
𝑞𝐽𝑅𝑃(�̅�1 + �̅�2 − �̅�3 − �̅�4)

𝑝𝐽𝑅𝑃(−�̅�1 − �̅�2 + �̅�3 + �̅�4)
0

] (6) 

 

Where 𝐽𝑅𝑃 represents the total rotational inertia of the whole motor rotor and propeller around 

the body shaft; �̅�1, �̅�2, �̅�3, �̅�4 denotes the rotational speed of propellers 1,2,3,4. 

Assuming that the four-rotor aircraft is a uniform and symmetrical rigid body, the mass and 

moment of inertia of the four-rotor aircraft do not change. The inertia matrix 𝑱 can be 

expressed as Equation 7: 

𝐽 = [

𝐽𝑥𝑥 0 0
0 𝐽𝑦𝑦 0

0 0 𝐽𝑧𝑧

] (7) 

 

Substituting Equation 7 into Equation.5, we can get Eq.8 and Eq.9 : 

[

𝐽𝑥𝑥�̇�
𝐽𝑦𝑦�̇�

𝐽𝑧𝑧�̇�
] = [

𝑞𝑟(𝐽𝑦𝑦 − 𝐽𝑧𝑧)

𝑝𝑟(𝐽𝑧𝑧 − 𝐽𝑥𝑥)

𝑝𝑞(𝐽𝑥𝑥 − 𝐽𝑦𝑦)

] + [
−𝑞𝐽𝑅𝑃Ω
𝑝𝐽𝑅𝑃Ω
0

] + [

𝜏𝑥
𝜏𝑦
𝜏𝑧
] (8) 

{
  
 

  
 �̇� =

1

𝐽𝑥𝑥
[𝜏𝑥 + 𝑞𝑟(𝐽𝑦𝑦 − 𝐽𝑧𝑧) − 𝑞𝐽𝑅𝑃Ω]

�̇� =
1

𝐽𝑦𝑦
[𝜏𝑦 + 𝑝𝑟(𝐽𝑧𝑧 − 𝐽𝑥𝑥) + 𝑝𝐽𝑅𝑃Ω]

�̇� =
1

𝐽𝑧𝑧
[𝜏𝑧 + 𝑝𝑞(𝐽𝑥𝑥 − 𝐽𝑦𝑦)]

 (9) 

 

Where Ω = −�̅�1 − �̅�2 + �̅�3 + �̅�4. 

Extended Kalman Filter (EKF) 

The state equation of the extended Kalman filter uses the non-linear stochastic difference 

equation to estimate the current system state using the previous system state: 
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𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘−1, 𝒘𝑘−1) (10) 

Ignore the 𝑢 control input, we can get: 

𝒙𝒌 = 𝑓(𝒙𝒌−1, 0, 𝒘𝒌−1) (11) 

The measurement equation for the current state is: 

𝒛𝒌 = ℎ(𝒙𝒌, 𝒗𝒌) (12) 

 

Where 𝑘 − 1 and 𝑘 represent the previous state and the current state respectively; 𝒙 ∈ 𝑅𝑛 

denotes the state to be estimated; 𝒖 ∈ 𝑅1 represents optional input control, which is generally 

ignored in practice; 𝒛 ∈ 𝑅𝑚 represents the measured value; 𝒘 ∈ 𝑅𝑛 represents process noise, 

when from the previous state into the current state, there will be many external factors 

interference; 𝒗 ∈ 𝑅𝑚 represents the measurement noise, mainly any measuring instrument 

will have a certain error; 𝑓 denotes the nonlinear mapping equation from the previous state to 

the current state; ℎ denotes the nonlinear mapping equation between state and measurement. 

Assume that the process noise 𝑤 and the measurement noise 𝑣  are independent of each other 

and follow a Gaussian distribution: 

𝑝(𝑤) ∼ 𝑁(0, 𝑄)
𝑝(𝑣) ∼ 𝑁(0, 𝑅)

𝑄 = 𝐸[𝒘𝒘𝑻]

𝑅 = 𝐸[𝒗𝒗𝑻]

 

Where 𝑄𝑛×𝑛 represents the covariance matrix of process noise 𝒘, represents the correlation 

between 𝒘 vector elements; 𝑅𝑚×𝑚 represents the covariance matrix of the measurement noise 

𝑣, representing the correlation between the 𝒗 vector elements; 𝑄, 𝑅 changes with state. 

Based on the above definition, ignoring the process noise 𝒘 and the control input 𝒖, it can get: 

�̅�𝒌 = 𝑓(�̂�𝒌−𝟏, 0,0) (13) 

Similarly, ignoring the measurement noise 𝒗 , we can obtain: 

𝑧�̅� = ℎ(�̅�𝒌, 0) (14) 

where, �̅�𝒌 represents the prior state estimation of the current state obtained only by using the 

prior knowledge of the process without considering the process noise; �̂�𝒌 represents the 

posterior state estimation of the current state obtained by using the measured value 𝑧𝒌, which 

is the final state. 𝑧�̅� represents the noise-free measurement value obtained by ignoring the 

measurement noise according to the current prior state. 

Rewrite the above model to get: 

https://doi.org/10.58291/ijec.v1n2.52
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𝒙𝒌 ≈ �̅�𝒌 + 𝐴(𝒙𝒌−𝟏 − �̂�𝒌−𝟏) +𝑊𝒘𝒌−𝟏
𝒛𝒌 ≈ �̅�𝒌 +𝐻(𝒙𝒌 − �̅�𝒌) + 𝑉𝒗𝒌
𝑝(𝑊𝒘𝒌−1) ∼ 𝑁(0,𝑊𝑄𝑊

𝑇)

𝑝(𝑉𝒗𝒌) ∼ 𝑁(0, 𝑉𝑅𝑉
𝑇)

 (15) 

 

Here, 𝒙𝒌 and 𝒛𝒌 represent the real state vector and the measurement vector respectively; �̅�𝒌 

and �̅�𝒌 represent the state vector and measurement vector without noise; 𝒘𝒌 and 𝒗𝒌 represent 

process noise and measurement noise, respectively. 

𝐴 denotes the Jacobian matrix of the partial derivative of function 𝑓 with respect to 𝒙: 

𝐴 =

[
 
 
 
 
 
 
 
∂𝑓1
∂𝑥1

∂𝑓1
∂𝑥2

⋯
∂𝑓1
∂𝑥𝑛

∂𝑓2
∂𝑥1

∂𝑓2
∂𝑥2

⋯
∂𝑓2
∂𝑥𝑛

⋮ ⋮ ⋱ ⋮
∂𝑓𝑛
∂𝑥1

∂𝑓𝑛
∂𝑥2

⋯
∂𝑓𝑛
∂𝑥𝑛]

 
 
 
 
 
 
 

|

|

(�̂�𝑘−1,0,0)

 (16) 

𝑊 denotes the Jacobian matrix of the partial derivative of function 𝑓 with respect to 𝒘: 

𝑊 =

[
 
 
 
 
 
 
 
∂𝑓1
∂𝑤1

∂𝑓1
∂𝑤2

⋯
∂𝑓1
∂𝑤𝑛

∂𝑓2
∂𝑤1

∂𝑓2
∂𝑤2

⋯
∂𝑓2
∂𝑤𝑛

⋮ ⋮ ⋱ ⋮
∂𝑓𝑛
∂𝑤1

∂𝑓𝑛
∂𝑤2

⋯
∂𝑓𝑛
∂𝑤𝑛]

 
 
 
 
 
 
 

|

|

(�̂�𝑘−1,0,0)

 (17) 

𝐻 denotes the Jacobian matrix of the partial derivative of function ℎ with respect to 𝒙: 

𝐻 =

[
 
 
 
 
 
 
 
∂ℎ1
∂𝑥1

∂ℎ1
∂𝑥2

⋯
∂ℎ1
∂𝑥𝑛

∂ℎ2
∂𝑥1

∂ℎ2
∂𝑥2

⋯
∂ℎ2
∂𝑥𝑛

⋮ ⋮ ⋱ ⋮
∂ℎ𝑛
∂𝑥1

∂ℎ𝑛
∂𝑥2

⋯
∂ℎ𝑛
∂𝑥𝑛]

 
 
 
 
 
 
 

|

|

(�̂�𝑘,0,0)

 (18) 

 

𝑉 denotes the Jacobian matrix of the partial derivative of function h with respect to 𝒗: 
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𝑉 =

[
 
 
 
 
 
 
 
∂ℎ1
∂𝑣1

∂ℎ1
∂𝑣2

⋯
∂ℎ1
∂𝑣𝑛

∂ℎ2
∂𝑣1

∂ℎ2
∂𝑣2

⋯
∂ℎ2
∂𝑣𝑛

⋮ ⋮ ⋱ ⋮
∂ℎ𝑛
∂𝑣1

∂ℎ𝑛
∂𝑣2

⋯
∂ℎ𝑛
∂𝑣𝑛]

 
 
 
 
 
 
 

|

|

(�̂�𝑘,0,0)

 (19) 

 

Because 𝒙 changes with 𝑘, the above Jacobian matrix 𝐴,𝑊,𝐻, 𝑉 also changes with 𝑘, which is 

different from the linear Kalman filter algorithm. 

A prior estimation error is defined according to the above formula: 

�̅�𝒙𝑘 ≈ 𝐴(𝒙𝒌−𝟏 − �̂�𝒌−𝟏) +𝑊𝒘𝒌−𝟏 (20) 

�̅�𝑧𝑘 ≈ 𝐻(𝒙𝒌 − �̂�𝒌) + 𝑉𝒗𝒌 ≈ 𝐻𝒆𝒙𝑘 + 𝑉𝒗𝒌 (21) 

𝑝(�̅�𝒙𝑘) ∼ 𝑁(0, �̅�𝑘) (22) 

�̅�𝑘 = 𝐸[�̅�𝒙𝑘 �̅�𝒙𝑘
𝑻 ] = 𝐴𝑃𝑘−1𝐴

𝑇 +𝑊𝑄𝑊𝑇 (23) 

𝑃𝑘 = 𝐸[𝒆𝒙𝑘𝒆𝒙𝑘
𝑻 ] = (𝐼 − 𝐾𝑘𝐻)�̅�𝑘 (24) 

𝐾𝑘 =
�̅�𝑘𝐻

𝑇

𝐻�̅�𝑘𝐻
𝑇 + 𝑉𝑅𝑉𝑇

 (25) 

 

where �̅�𝑘 and 𝑃𝑘 represent the covariance matrix of the prior estimation error and the posterior 

estimation error, respectively, and 𝐾𝑘 ∈ 𝑅
𝑛×m represents the Kalman gain or the equalization 

coefficient. 

Suppose that the result of the error estimate is �̂�𝒌, then the posterior state estimate can be 

obtained: 

𝒙𝒌 = �̅̂�𝒌 + �̂�𝒌 (26) 

Set the initial �̅�𝑘 = 0, using the basic Kalman filter method to derive: 

�̂�𝒌 = 𝐾𝑘�̅�𝑧𝑘 (27) 

From this, the final state estimation is: 

�̂�𝒌 = �̅�𝒌 + 𝐾𝑘(𝒛𝒌 − ℎ(�̅�𝒌, 0)) (28) 
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According to the Equation 13 and Equation 23, the prior state is estimated, and then the 

posterior state is estimated according to the Equation 24, Equation 25 and Equation 28, so as 

to estimate the current state iteratively and recursively. 

Result and Discussion 

Simulation Platform Establishment 

According to the above established UAV attitude model and the mathematical model of 

extended Kalman filter, the validity of extended Kalman filter is verified on Matlab, and the 

simulation model of four-rotor UAV is established on Simulink. The simulation platform of 

four-rotor UAV and the model of four-rotor UAV are shown in Figure 3 and Figure 4. 

 

Figure 3 Four-Rotor UAV Simulation Model 

 

Figure 4 Four-Rotor UAV Model 

The four-rotor UAV controls the flight state of the UAV by controlling the speed of the four 

motors, such as position, speed, attitude and angular velocity. The four-rotor UAV is a typical 

multi-input multi-output (MIMO), nonlinear and strongly coupled underactuated system. 

When designing the control rate, it is necessary to combine the dynamic model of the UAV and 

adopt the structure of inner and outer loop control. The inner loop is used to control the 
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attitude, and the outer loop is used to control the position. These two controllers have their 

own inner and outer loops to control the angular velocity, attitude and linear velocity and 

position respectively. The four-rotor UAV simulation model in Figure 3 includes UAV position 

controller, attitude controller, control allocation module, control efficiency module, dynamics 

module, gravity module and visualization module. 

The position controller is used to control the position of the UAV. The inner loop uses the PID 

controller to control the line speed, and the outer loop uses the P controller to control the 

position. Similarly, the attitude controller is used to control the attitude of the UAV. The inner 

loop uses the PID controller to control the angular velocity, and the outer loop uses the P 

controller to control the angle. The control distribution module converts the expected force 

and torque into the expected speed of the motor; control efficiency module, which calculates 

the force and torque according to the speed of the motor. The dynamics module is used to 

represent the UAV body, and calculate the position, velocity, attitude, angular velocity and 

other information of the UAV according to the input force and torque. a gravity module for 

applying gravity to the UAV; finally, the visualization module, using the robot toolbox for 

visual display, as shown in Figure 4 

Simulation Result 

The real state information of the UAV in the above UAV simulation model is obtained, and the 

Gaussian white noise is added. The mean value is 0 and the variance is 1. The initial state is 

[𝜃    �̇�    𝜙    �̇�    𝜓    �̇�] = [1    2    3    3    2    2], the sampling time is set to 0.1𝑠, and the state 

estimation of the UAV is shown in Figure 5, Figure 6 and Figure 7. 

 

Figure 5 Estimation of Pitch Angular Velocity �̇� 
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Figure 6 Estimation of Roll Angular Velocity �̇� 

 

Figure 7 Estimation of Yaw Angular Velocity �̇� 

Figure 5, Figure 6 and Figure.7 respectively represent the estimation of pitch angular velocity, 

roll angular velocity and yaw angular velocity. It can be seen from the information in the figure 

that there is a certain noise in the measured value of the state. The extended Kalman filter 

algorithm can effectively estimate the real state of the UAV.The absolute value of the error is 

kept within 0 ∼ 0.5, which proves the effectiveness of the extended Kalman filter. 

 

Conclusions 

In this paper, the extended Kalman filter (EKF) algorithm is used to estimate the attitude 

information of the four-rotor UAV. Firstly, a four-rotor UAV simulation model is established 

on Simulink in Matlab, and then the attitude information of the UAV is measured and 

estimated. The results show that the extended Kalman filter algorithm can effectively estimate 
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the attitude information of UAV. The simulation results show that the attitude solver designed 

by EKF algorithm can provide reliable attitude feedback for UAV flight control, improve the 

accuracy of attitude measurement, and meet the needs of UAV attitude control. 
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