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Abstract: Given the shortcomings of the ant colony algorithm in the path planning process, 

such as low convergence speed and easiness of falling into local optimization, an improved ant 

colony algorithm (ACO) suitable for AGV path planning was proposed. The initial pheromone 

concentration was differentiated on the grid map according to the distance, which avoided the 

blind search in the early stage of the ant colony and sped up the convergence speed of the 

algorithm. The distance between the current grid and the grid to be selected and the distance 

between the grid to be selected, and the target grid were synthesized to improve the heuristic 

function to increase the direction of ant colony pathfinding. The dynamic heuristic factor was 

introduced to avoid the phenomenon of prematurity and falling into local optimization. It was 

proposed to label the direction of the adjacent grid of each grid, which increased the distance 

between the optimal path and obstacles, enhanced the security of the optimal path, avoided the 

occurrence of the dead corner phenomenon, and improved the robustness of the algorithm. The 

simulation results show that in the same environment, the improved algorithm's search 

efficiency and iterative stability are better than that of basic ACO algorithms in AGV path 

planning. 

Keywords: AGV, Path Planning, Initial Pheromone, Dynamic Heuristic Factor, Direction 

Label 

 

Introduction 

With the increasing maturity of automation technology, an increasing number of automated 

guided vehicles (AGVs) have become the mainstream work method in the automatic handling 

process of factories. Its main function is to safely transport goods to the designated destination 

through the planned path in a complex working environment (De Ryck et al., 2020). AGVs can 

complete transportation tasks in harsh and complex environments compared to manual 

handling. The emergence of the AGV automatic navigation system has changed the logistics 

structure of traditional manufacturing workshops, greatly reduced the production cost and 

improved the production efficiency of the enterprise. 
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With the continuous development of the AGV market and path-planning technology, many 

optimization algorithms are increasingly used to solve path-planning problems with different 

application backgrounds and task requirements. However, most of the previous works (Akka 

& Khaber, 2018) considered the performance improvement of a single algorithm in small-

scale, low-complexity maps and often ignored the limitations of a single algorithm in large-

scale, complex environments, and there is a lack of practical application verification. Several 

algorithms have long been applied to plan the optimal path for the AGV, including Dijkstra's, 

A∗ , and genetic algorithms (GA). Based on Dijkstra's algorithm, Kim and Tanchoco (Kim & 

Tanchoco, 1991) planned the AGV path using the TW graph's free time window (TW). Yu and 

Egbelu (Yu & Egbelu, 2001) classified the idle AGV and minimized the idle time of the AGV 

through genetic iteration. Mimicking the process of natural evolution, Umar et al. (Umar et 

al., 2012) applied GA to search for the optimal path for the AGV. 

Although these algorithms can search the path distributed and have good global search ability, 

there are still some defects in some aspects, such as long operation time, easy to appear 

"premature" phenomenon, which leads to the search path effect is not good enough and the 

work efficiency is low. An optimal ant colony algorithm is proposed to address the above 

problems in this paper. By improving heuristic functions, state transition probabilities and 

pheromone update strategy, the algorithm can not only enhance the efficiency of intelligent 

guidance vehicle path planning but also help to improve the theoretical and technical system 

of the ACO and expand the application field of the ACO (Zhang, Luo, Yin, & Zou, 2023). 

 

Research Method 

Environment Modelling 

Establishing the AGV's movement environment is an important step in the study of path 

planning for AGV. Many methods for modelling 2D planar maps include a topological map, 

visibility graph approach and free space methods (Li & Chen, 2022). This paper chooses the 

grid map as the 2D planar map model, considering that AGVs work mostly indoors and in an 

environment where obstacles are known. The grid map model is easy to create, simple to 

maintain and highly adaptable, and simple modifications can change the model environment. 

Its working principle is to assume that the path environment space of AGV is two-dimensional 

and divide the environment into square with the same size according to the specific 

requirements, which is called the grid map model. Grids can be divided into two categories: 

free grid and obstacle grid. The former is white, and the latter is black, which are represented 

by "0" and "1" respectively (Sun et al., 2021). The whole grid constitutes a complete grid 
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environment model. A 5×5 grid environment is shown in Figure 1, with the lower left corner 

of the environment as the coordinates, upwards as the positive direction of the Y-axis and to 

the right as the positive direction of the X-axis, a plane right angle coordinate system 

established and a grid cell length of 1cm is selected (Zhao & Cheah, 2023). 

The grid environment is labelled from left to right and from top to bottom. In an m x m grid 

environment, the serial number S corresponds to the coordinates (x, y) of the raster in which 

it is located, and the correspondence is: 

{
𝑥 = 𝑚𝑜𝑑(𝑆 − 1,𝑚) + 0.5
𝑦 = 𝑚 + 0.5 − ceil(𝑆/𝑚)

 (1) 

 

Where mod is a remainder operation, ceil is an upward rounding operation. Thus, the travel 

path of an AGV can be represented as a series of sequences of numbers. 

 

Figure 1 AGV Grid Environment 

 

The directions of motion of the AGV are shown in Figure 2. Except for the edge grids, each 

grid generally has eight directions of motion: top left, top, top right, left, right, bottom left, 

bottom right and bottom right, which are numbered 1, 2, 3, 4, 5, 6, 7 and 8 numbers 

respectively (Zheng, Sayed, & Essa, 2019). 
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Figure 2 AGV Direction of Motion 

 

Grid Environmental Processing 

During indoor movement of the AGV, it is one of the considerations in AVG path planning to 

ensure that the optimal path avoids collisions with static obstacles and improves the safety of 

the path. If the optional grid contains an odd number of grids, it is determined whether two 

neighboring grids perpendicular to the direction of the path are obstacles. If one of the two 

neighboring grids is an obstacle, the grid is considered a "forbidden grid". This method 

reduces the likelihood of collision between the AGV and the obstacle. The correct path of travel 

is away from the edge of the obstacle as shown in Figure 3, reducing the possibility of collision 

between the AGV and static obstacles and increasing the safety of AGV indoor operations (Yu, 

Yuan, Li, Yuan, & Deng, 2023). 

 

Figure 3 Collision Avoidance Effect 

 

The "dead corner" phenomenon frequently occurs during the iterative process of the 

algorithm, affecting the efficiency of the ant colony search and the final result of the algorithm. 

This affects the search's efficiency and the algorithm's final result. As can be seen from Figure 

4, both the basic ACO and the improved algorithm only consider the distance between the grid 

to be selected, and the target grid as the criterion for route selection, resulting in the grid 
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labelled 3 still being included in the queue of selectable grids when the AGV travels to grid 𝑖. 

When the AGV travels to grid 3, it finds that it can only travel toward grid 2 or grid 4. 

 

Figure 4 Comparison of Algorithm Results 

 

To solve the problem of "dead corner" during the iteration of the algorithm, this paper extends 

a layer of the raster on top of the neighbouring raster for calculation. As shown in Figure 5, the 

neighbouring grid of grid 𝑖, labelled 3, is a feasible grid, and the two neighbouring grids 

perpendicular to it (grids 2,4) are both feasible grids, so grid 3 satisfies the path safety 

criterion. However, the neighbouring grids of grid 3, marked 2 and 4, are obstacles, so grid 𝑖 

moves to grid 3 and eventually moves to the left or down. Therefore, for grid 𝑖, grid 3 is called 

a "dead corner". In contrast to a colony that is trapped in a "dead-end" situation, this algorithm 

reduces the computational effort, the number of turns and the length of the optimal path by 

marking grid 3 as a "forbidden grid" in advance and moving directly from grid 𝑖 to grid 2 or 

grid 4. This reduces the computational effort of the algorithm as well as the number of turns 

and the length of the optimal path, speeds up the convergence of the algorithm based on the 

search for the global optimal path and saves energy in the operation of the AGV. 

 

Figure 5 Anti-dead-end Principle 
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Ant Colony Algorithm Optimization 

Traditional Ant Colony Algorithm 

In the traditional ant colony algorithm mathematical model, the state transition probability 

and pheromone update strategy have a crucial role in the solution efficiency of the algorithm 

(Mullen et al., 2009)  

State transition probability 

At time 𝑡, ant 𝑘 is moved from node 𝑖 to node 𝑗 by calculating the state transition probability 

𝑃𝑖𝑗
𝑘(𝑡); then, the next node is selected according to the roulette method, which is defined as: 

𝑃𝑖𝑗
𝑘(𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽

∑  𝑗∈allowed𝑘 [𝜏𝑖𝑗(𝑡)]
𝛼
[𝜂𝑖𝑗(𝑡)]

𝛽
, 𝑗 ∈  allowed𝑘

0,  otherswise 

 (2) 

Where 𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
, 𝑑𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
, 𝜂𝑖𝑗(𝑡) is the heuristic function and represents 

the Euler distance from the current node to the candidate node, 𝜏𝑖𝑗(𝑡) is the pheromone 

concentration between two nodes, allowed 𝑘 is the set of next mobile nodes to be selected by 

the ants, and 𝛼 and 𝛽 are the pheromone importance factor and heuristic function importance 

factor, respectively. 

Pheromone update strategy 

The pheromone update strategy is a process in which the ant colony algorithm continuously 

realizes positive feedback. Through this method, the ant colony guides the descendants of the 

ants to continuously converge to obtain an optimal path (Xiao et al., 2022). After all 

contemporary ants have reached the target, each ant will update the pheromone concentration 

according to Equation 3, Equation 4, and Equation 5. 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗(𝑡) (3) 

Δ𝜏𝑖𝑗(𝑡) = ∑  

𝑚

𝑘=1

Δ𝜏𝑖𝑗
𝑘 (𝑡) (4) 

Δ𝜏𝑖𝑗
𝑘 (𝑡) = {

𝑄

𝐿𝑘
,      if ant 𝑘 passes through path (𝑖, 𝑗)

0,      otherwise 

 (5) 
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Where 𝜌 ∈ (0,1) is the pheromone volatilization coefficient, Δ𝜏𝑖𝑗(𝑡) is the sum of pheromone 

increments for all ants, Δ𝜏𝑖𝑗
𝑘 (𝑡) is the pheromone increment of the 𝑘th  ant on the path (𝑖, 𝑗), 𝑄 

is the pheromone intensity, and 𝐿𝑘 is the total path length of the 𝑘th  ant after one iteration. 

Improvement Ant Colony Algorithm 

In the early iterations of the ant colony algorithm, the lack of differentiated initial pheromone 

concentration in the map environment and the lack of guiding factors in the pathfinding 

process leads to blind searching by the ant colony in the early stages of the algorithm and slow 

convergence of the algorithm. Therefore, this paper designs a differential initial pheromone 

concentration based on the Euclidean distance, the known map environment model, and the 

initial pheromone's differential distribution around the starting point and the "sub-optimal 

path" produced by the target point (Sun et al., 2021). 

Tau(𝑖, 𝑗) =

{
 
 

 
 

𝜎∗𝑑𝑠𝑒
𝑑𝑠𝑖 + 𝑑𝑖𝑗 + 𝑑𝑗𝑒

noobstaclebetweennode(s, e)lines

𝜎∗(𝑑𝑠𝑛 + 𝑑𝑚𝑛 + 𝑑𝑛𝑒)

𝑑𝑠𝑖 + 𝑑𝑖𝑗 +𝑚𝑖𝑛(𝑑𝑗𝑚) + 𝑑𝑚𝑒
, otherwise

 (6) 

 

Where Tau(𝑖, 𝑗) is the pheromone concentration between the feasible grid 𝑖 and the feasible 

grid 𝑗, 𝑑𝑠𝑖 is the Euclidean distance between the departure grid 𝑆 and the current grid 𝑖, 𝑑𝑖𝑗 is 

the Euclidean distance between the departure grid 𝑖 and the current grid 𝑗, 𝑑𝑗𝑒  is the Euclidean 

distance between the departure grid 𝑗 and the current grid 𝑒, 𝑑𝑠𝑒 is the Euclidean distance 

between the starting grid and the target grid, min(𝑑𝑗𝑚) is the minimum Euclidean distance of 

grid 𝑗 from the "suboptimal path", 𝑑𝑠𝑚, 𝑑𝑚𝑛, 𝑑𝑛𝑒, 𝑑𝑚𝑒 are the Euclidean distances between two 

grids on the "suboptimal path", 𝜎 is the discretization factor. A larger 𝜎 represents a larger 

discrepancy in the initial global pheromone concentration (Cenerini, Mehrez, Han, Jeon, & 

Melek, 2023). 

The straight line between the two points is the shortest distance, but if only the line between 

the start and end grid is treated as a "sub-optimal path" and the static obstacle between the 

start and end grid is not considered, a direct pheromone concentration initialization of the line 

between the two grids will instead mislead the ant colony to search for the pheromone. As 

shown in Figure 6(a), the dashed line is the global optimal path and the solid line is the path 

finding result according to the initial pheromone. As the initialization of the pheromone does 

not consider the influence of static obstacles between the connecting lines, the ant colony 

needs to continue searching randomly along the obstacles to find the shortest path when it 
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reaches the obstacles, which is inefficient and difficult to converge to the global optimal. The 

initial pheromone concentration between the grids is then determined based on the Euclidean 

distance, with the shorter the distance from the "next best path", the higher the initial 

pheromone concentration and the lower the opposite. The specific method for determining 

the 'second best path' is as follows: first determine the line between the starting grid and the 

ending grid, and when there is an obstacle in the line of grid (𝑠, 𝑒), form a breakpoint at the 

obstacle. If the obstacle is located to the left or right of the breakpoint, a search will be carried 

out up and down the obstacle, recording the number of obstacles until a workable grid is found. 

Compare the number of obstacles in both directions and select the feasible grid in the direction 

with fewer obstacles as the next starting point. Compare the number of obstacles in both 

directions and select the feasible grid in the direction with fewer obstacles as the next starting 

point until you reach the end grid and finally find the 'next best route'. As shown in the solid 

line in Figure 6(a), there is an obstacle in the connection of grid (s, e), and the obstacle is 

located to the right of the breakpoint, so search up and down along the obstacle, and find that 

the number of obstacle grids downward is less, so the feasible grid below the obstacle is used 

as a new starting point to continue the search, which eventually forms the "second-best path" 

shown in the dashed line in the figure. The dashed line in Figure 6(b) shows that grid 𝑗 is the 

grid to be selected from grid 𝑖. Grid 𝑗 is the grid to be selected from grid 𝑖. The closest grid m 

to the "next best route" is selected as the origin. The initial pheromone concentration between 

grids (𝑖, 𝑗) can be calculated using Equation 6. 

 

Figure 6 Principle of Pheromone Initialization 

 

As shown in Figure 6, when grid 𝑖 and grid 𝑗 are closer to the "second-best path", the higher 

the concentration of initialized pheromone between grid 𝑖 and grid 𝑗, the more likely the ant 

colony will search in the direction of that path in the pathfinding process, improving the 
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efficiency of the ant colony pathfinding, speeding up the convergence of the algorithm and 

reducing the number of iterations of the algorithm. 

Improvement Heuristic Function 

In the basic ant colony algorithm, the heuristic function is determined only by the distance 𝑑𝑖𝑗 

between the current grid 𝑖 and the grid 𝑗 to be selected. However, the difference in distance 

between the grids is small and it is difficult for the colony to select the best grids from the many 

available grids simply by the distance d between the grids. The best grid is selected by the ant 

colony only by the inter-grid distance 𝑑𝑖𝑗. For example, when the unit grid width is 1 , the 

minimum distance between adjacent grids is 1 and the maximum distance is about 1.4; after 

the distance heuristic function of the basic ACO algorithm, the difference between the nearest 

adjacent grid and the farthest adjacent grid is only about 0.3 . The distance heuristic function 

has a weak pathfinding effect on the ant colony, which cannot combine the pheromone 

concentration between grids and the distance between grids. This reduces the search efficiency 

of the ant colony algorithm as well as the final pathfinding effect. Therefore, this paper 

improves a heuristic function whose value is determined by the distance 𝑑𝑖𝑗 between the 

current grid 𝑖 and the grid 𝑗 to be selected and the distance 𝑑𝑗𝑒 between the grid 𝑗 to be selected 

and the target grid 𝑒, as shown in Equation 7. 

𝜂𝑖𝑗(𝑡) =
𝜑𝑖𝑗

𝜔∗𝑑𝑖𝑗 + 𝜆 ∗ 𝑑𝑗𝑒
 (7) 

To avoid the problem of weak guidance of the heuristic function value on the ant colony 

pathfinding process due to the small distance difference between the grids, the method of 

amplifying the distance difference is used to enhance the "superiority and inferiority" between 

the grids to be selected. 

𝜑𝑖𝑗 =
(𝐷𝑚𝑎𝑥 − 𝑑𝑖𝑗)

(𝐷𝑚𝑎𝑥 −𝐷min + 0.01)
∗ 𝑞 (8) 

𝑞 =
𝑑𝑠𝑒
𝑑𝑗𝑒

 (9) 

Where 𝜑𝑖𝑗 is the amplification function of the distance between grid 𝑖 and grid 𝑗, 𝜔 and 𝜆 are 

distance amplification factors, which can be set according to the specific environment, 

𝐷max, 𝐷min are the maximum and minimum values of the distance between the current grid 

and the optional grid, respectively, 0.01, to ensure that the denominator is not zero. The 

coefficient 𝑞 is the amplification factor, and its value is related to the distance from the grid to 

be selected to the target grid. 
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The final calculation of the heuristic function is shown in Equation 10: 

𝜂𝑖𝑗(𝑡) =
𝑑𝑠𝑒 ∗ (𝐷𝑚𝑎𝑥 − 𝑑𝑖𝑗)

𝑑𝑗𝑒 ∗ (𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛 + 0.01) ∗ (𝜔
∗𝑑𝑖𝑗 + 𝜆 ∗ 𝑑𝑗𝑒)

 (10) 

To facilitate the heuristic function calculation, the neighbouring grid of each grid is created 

distance matrix 𝐷𝑛2×8, as shown in Equation11: 

𝐷(𝑖, 𝑗) =

{
 
 

 
 
𝑙,     𝐺(𝑖) = 0 𝑚𝑜𝑑(𝑗, 2) = 0𝐺(𝑗) = 0

√2 ∗ 𝑙,     𝐺(𝑖) = 0 𝑚𝑜𝑑(𝑗, 2) = 1

    𝐺(𝑗) = 0 𝐺(𝑖′) + 𝐺(𝑖′′) = 0

    𝐺(𝑖1) + 𝐺(𝑖2) ≠ 2

∞,      otherwise 

 (11) 

Where 𝑙 is the width per unit grid, and 𝐺(𝑖) is the state of grid 𝑖. A value of 0 indicates a feasible 

grid, and a value of 1 indicates a static obstruction. 𝑗 is the direction of the grid to be selected 

with respect to grid 𝑖. 𝑖, 𝑖′′, 𝑖1, 𝑖2 are the neighbouring grids perpendicular to the direction of 

the slash. 

Pheromone Update Strategy 

The pheromone factor determines how important it is for the ant to be influenced by the 

pheromone concentration as the ant travels to the next grid in the pathfinding process. To 

enhance the colony's global search ability and avoid the occurrence of local optimum or "early 

maturity," the pheromone factor was set smaller to reduce the pheromone guidance to the 

colony's pathfinding. As the number of iterations increases, the ant colony accumulates more 

pheromones on better paths and fewer pheromones on worse paths during pathfinding. By 

increasing the pheromone factor, the ant colony follows the paths with higher pheromone 

concentration, narrowing the search range and speeding up the algorithm's convergence. As 

shown in Equation 12: 

𝛼 = {

𝑁𝐶𝑚𝑎𝑥
𝑁𝐶𝑚𝑎𝑥 −𝑁𝐶 + 1

,     𝛼 ⩽ 𝛼𝑚𝑎𝑥

𝛼𝑚𝑎𝑥,      otherwise 

 (12) 

Where 𝑁𝐶max is the maximum number of iterations, and 𝑁𝐶 is the current number of 

iterations. To avoid the algorithm falling into local optimum due to excessive pheromone 

importance in the later stages of the algorithm, 𝛼max is set as the upper bound threshold of 

pheromone importance. 
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Result and Discussion 

Experimental Preparation 

All algorithms in this paper have been implemented by MATLAB simulation. The map is 

modelled using the grid method with a map size of 20 x 20. To avoid errors from a single 

experiment, 30 simulations are carried out and the experimental data are averaged. To 

increase the realism of the map, static obstacles were randomly distributed in the map grid. 

The performance of the basic and improved ant colony algorithms was analyzed in a 20×20 

raster size environment, and the relevant parameters are shown in Table 1. 

Table 1 Parameter values of the improved ACO 

Parameter Value 

𝑁𝐶max  50 

Q 100 

Taumin  5 

𝜆 27 

𝜔 27 

𝛼max 2 

𝑀 50 

Taumax 30 

𝜎 20 

𝑙 21 

𝛽 3 

 

Comparison of Algorithm Performance 

The basic ACO algorithm was compared with the improved ACO algorithm on a map size of 

20×20 grid. The simulation results are shown in Figure 7 and Table 2. 

 

Figure 7 Simulation Results 
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Table 2 Simulation Results 

Optimal Path Indicators  The Basic ACO  The Improved ACO  

Path length  35.1  33.6  
Turning times  19  14  
Number of iterations stable  16  9  
Iteration stabilization time / s  0.259  0.175  
Program run time / s 1.130  1.268  

 

Figure 7 (a) and Figure 7 (b) show the optimal planning paths for the basic and improved ant 

colony algorithms for a grid map size of 20 × 20, respectively. It can be seen from the diagram 

that the improved ACO algorithm avoids "dead ends" and reduces the length of the path and 

the number of turns. And as can be seen from Table 2, the improved ACO reduces the path 

planning by 4.3%, the search efficiency by 43.8%, and the iteration stabilization time by 32.4% 

compared to the basic ACO. 

 

Conclusions 

Improvements to the ACO's initialization of pheromone concentrations and heuristic 

functions in the construction of 2D planar maps have improved the overall performance of the 

ACO, for example, by increasing the speed of convergence, finding the global optimal path and 

increasing the stability of the algorithm. By introducing a "directional numbering" for each 

raster to avoid "dead ends" and a "cornering" mechanism, the distance between the optimal 

path and the obstacle is reasonably increased. This improves the safety and reliability of the 

AGV path. By introducing a dynamic pheromone factor, the algorithm avoids the phenomenon 

of "premature" in the early stage and partial optimization in the later stage. Simulation 

experiments and results show that the algorithm can achieve the optimal ratio between path 

length reduction and the number of turns and plan a safe and reliable optimal path for the 

AGV. Compared with other algorithms, the algorithm in this paper outperforms in terms of 

convergence, stability and finding the shortest path. The algorithm performs better than 

others regarding convergence, stability and finding the shortest path. The algorithm plans the 

global optimal path based on the AGV path's safety, which improves convergence speed and 

enhances the algorithm's stability. In future research, the particle swarm algorithm can be 

combined with parameter optimization to plan more intelligent paths. The sliding window 

method can be introduced to enable the AGV to achieve dynamic obstacle avoidance in 

dynamic environments.  
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