

The Enterprise Lingua Franca: A Foundational Framework for Semantic Interoperability and Cross-Functional Cognition

Simon Suwanzy Dzereke

Federal Aviation Administration, AHR, Career and Leadership Development, Washington, DC, US

Semefa Elikplim Dzreke

Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

Abstract: Digital transformation often fails at the conceptual level: Seventy-three percent of cross-functional initiatives fail because the functional mental models don't match up, making it impossible to solve difficult problems like making sustainability profitable. This research identifies a significant deficiency in enterprise interoperability, wherein disparate departmental epistemologies manifested in conflicting interpretations of fundamental constructs such as "customer" or "value" among Marketing, Finance, and Operations—result in strategic incoherence despite technological integration. Technological solutions are inadequate in addressing these profound philosophical gaps. This paper introduces the Enterprise Lingua Franca, a new cognitive framework created through design science research that combines case studies, ontology engineering, and cognitive task analysis to make organizational intelligence more cohesive. It creates the first theory of Cross-Functional Cognition and gives tangible steps for semantic alignment that turn conceptual fragmentation into strategic coherence, which opens up new ways to solve problems.

Keywords: Semantic Interoperability, Cross-Functional Cognition, Enterprise Ontology, digital transformation.

Correspondents Author:

Simon Suwanzy Dzereke, Federal Aviation Administration, AHR, Career and Leadership Development, Washington, DC, US
Email: simon.dzreke@gmail.com

Introduction

A \$220 million financial loss reported by a Fortune 500 manufacturer in 2022 exemplifies a systemic vulnerability in modern enterprises: a strategic failure stemming not from operational shortcomings but from fundamentally incompatible conceptual frameworks. The company's SEC filing recorded that Supply Chain staff assessed "on-time delivery" solely based on warehouse departure timestamps. Finance, however, postponed revenue recognition until unambiguous proof of client receipt, a contractual obligation lacking in logistics systems ([SEC, 2022](#)). Both interpretations demonstrated internal validity and adherence to procedures within their respective functional domains. This ontological imbalance caused a series of repercussions: postponed financial reporting, investor lawsuits, and regulatory inquiries. This occurrence highlights a significant shortcoming in current interoperability research, which mostly focuses on technological data integration while overlooking the more profound issue of epistemic alignment among organizational activities ([Baskerville et al., 2020](#)).

The recurrence of these failures in technologically advanced businesses indicates that semantic interoperability requires more than mere syntactical data sharing. Modern research recognizes functional epistemologies discipline-specific conceptual frameworks that dictate departmental interpretations of fundamental constructs as significant obstacles to organizational coherence. Marketing operationalizes "customer" as a probabilistic behavioral entity characterized by engagement measurements and lifetime value forecasts. Logistics, on the other hand, regards the "customer" as a geospatial service node limited by delivery timeframes and physical fulfillment criteria ([Leonardi, 2021](#)). This ontological heterogeneity is structurally ingrained by specialized performance measurements, differing incentive frameworks, and unique professional socialization processes. These characteristics establish strong epistemic barriers that are impervious to traditional governance tools such as cross-functional committees or integrated dashboards. Dzreke and Dzreke ([2025d](#)) present empirical evidence illustrating how compartmentalized frameworks consistently affect enterprise-wide decision-making, thereby creating strategic blind spots that exacerbate with heightened analytical skill.

Three critical research inquiries arise from this epistemological issue, necessitating academic focus. First, what specific mechanisms can rival functional epistemologies employ to obstruct strategic problem-solving in big, interdependent organizations? Secondly, what defines a minimal viable ontology, adequately abstract to facilitate cross-functional understanding and sufficiently concrete to avert bureaucratic abstraction and operational irrelevance? Third, how can organizations successfully establish a unified "grammar of value" that facilitates interpretation, discourse, and coordinated action across diverse areas of expertise? These

concerns require a fundamental redefinition of interoperability, emphasizing the difficulty of conceptual integration and meaning congruence over mere information transfer.

This study posits that sustained enterprise problem-solving requires the intentional design of conceptual coherence via an Enterprise Lingua Franca. This core architecture creates a common ontological basis that facilitates accurate semantic translation and iterative learning across functional boundaries, while intentionally maintaining critical specialized knowledge (Dzreke, 2025a). The Enterprise Lingua Franca serves as essential cognitive infrastructure by formalizing fundamental conceptions and their inherent relational logics, while maintaining essential contextual interpretative flexibility. According to Dzreke and Dzreke (2025f), these architectures represent essential organizational capacities that significantly influence systemic flexibility and resilience in volatile and uncertain settings. The clear practical implication is significant: organizations without this conceptual framework would continuously be susceptible to expensive knowledge failures, regardless of technical investment or data availability.

Literature Review: The Fragmented Enterprise Mind

The Epistemic Disruption

Recent academic research uncovers a significant epistemic divide within large organizations, wherein functional units function as separate "epistemic tribes" that maintain incompatible conceptual frameworks and differing standards for validating knowledge claims (Barley et al., 2018; Dzreke & Dzreke, 2025f). This tribalization results in conflicting interpretations of fundamental business phenomena; seemingly shared data is perceived via divergent perspectives influenced by specialized knowledge, localized goals, and domain-specific reasoning. Ironically, Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM) technologies, intended for operational integration, sometimes exacerbate these silos. They accomplish this by explicitly codifying functional biases into inflexible, standardized data models and workflows, thus institutionalizing specific ontologies (Berente et al., 2019; Dzreke, 2025c). The emphasis of Marketing on probabilistic client lifetime value is fundamentally distinct from Finance's requirement for GAAP-compliant transactional precision. As a result, the digital infrastructure strengthens functional barriers rather than eliminating them, integrating conflicting conceptual frameworks into the organization's information architecture. The establishment of divergent functional paradigms generates enduring, frequently insurmountable, obstacles to comprehensive organizational comprehension and synchronized strategic initiatives.

Constraints of Semantic Interoperability

Attempts to reconcile these epistemic divisions using solely technical solutions face significant constraints in attaining authentic semantic interoperability. Standards such as JSON-LD (JavaScript Object Notation for Linked Data), although proficient in syntactic data interchange and elementary schema alignment, inherently do not address the fundamental semantic conflicts stemming from disparate functional ontologies ([Hendler & Mulvehill, 2016](#); [Dzreke & Dzreke, 2025p, 2025g](#)). Technical interoperability pertains to the organization and transmission of data while remaining indifferent to the interpretive context crucial for mutual comprehension across domains. Ontology mapping tools, despite their algorithmic complexity, frequently overlook the ingrained tacit cognitive frameworks and contextual knowledge that fundamentally influence how functional experts attribute significance and relevance to data points in their daily activities ([Faraj et al., 2021](#); [Dzreke & Dzreke, 2025l](#)). Translating terms across functional domains such as correlating Marketing's "customer satisfaction" with Operations' "service quality variance" is inherently ambiguous and entails considerable loss of clarity. These concepts exist inside distinct, intricate networks of meaning, performance indicators, and temporal factors relevant to each function's rationale and goals. The semantic gap remains because present technical solutions lack the potential to collect or reconcile the contextual, experiential knowledge that defines functional expertise and drives meaning-making.

Table 1 The Conceptual Divide in Enterprise Functions

Function	Core Ontology	Value Logic	Time Horizon
Marketing	Customer Journey	Lifetime Value	Quarterly
Supply Chain	Order-Delivery Cycle	Cost/Service Trade-off	Weekly
Finance	GAAP-Compliance	Risk-Adjusted ROI	Monthly

Note. Adapted from analysis of functional paradigms in integrated systems failure ([Dzreke, 2025c](#); [Barley et al., 2018](#)).

Systematizing the Gap

Table 1 highlights a significant research gap: the lack of comprehensive frameworks that address the intricate interplay of technical, semantic, and *cognitive* aspects in organizational integration. Current methodologies generally conceptualize interoperability as a hierarchical, sequential issue (syntactic → semantic → pragmatic), overlooking the dynamic interactions among these layers within existing organizational power frameworks and entrenched epistemic cultures ([Dzreke & Dzreke, 2025e](#); [Leonardi & Neeley, 2022](#)). Technical solutions frequently presuppose that meaning can be standardized via top-down mandates, overlooking the emergence of ontologies from the daily practices, incentive structures, and socialization

processes of functional subcultures ([Dzreke & Dzreke, 2025](#)). This gap is structured and sustained through three interrelated theoretical and practical shortcomings: (1) The Reductionist Fallacy, which mistakenly simplifies complex semantic conflicts to mere data format discrepancies, thereby obscuring their fundamental nature as conflicts of institutional logics and values ([Thornton et al., 2023](#)); (2) The Cognitive Blindspot, wherein mapping tools emphasize explicit, formal schemas while neglecting the essential role of tacit knowledge inherent in functional routines and expertise ([Dzreke, 2025d](#)); and (3) The Temporal Misalignment, where divergent functional time horizons (as illustrated in Table 1) hinder synchronized interpretation and coordinated responses to evolving business phenomena ([Dzreke & Dzreke, 2025f](#)). Berente et al. (2019) illustrate that ERP systems often intensify these challenges by enforcing standardized data models that obliterate essential contextual significance, resulting in what Dzreke ([2025c](#)) refers to as "semantic debt" the accruing, frequently concealed, expense of unresolved conceptual discrepancies that ultimately hinders agility and decision-making quality. This systematization indicates that addressing profound functional fragmentation requires entirely new frameworks that can integrate socio-technical affordances with effective epistemic reconciliation mechanisms, thus altering the manner in which organizations collaboratively create and validate shared meaning ([Dzreke & Dzreke, 2025e](#); [Faraj et al., 2021](#)).

Theoretical Framework: The Enterprise Lingua Franca

The Enterprise Lingua Franca (ELF) is a complex cognitive framework aimed at overcoming organizational silos by creating a universal semantic basis for strategy alignment ([Dzreke, 2025a](#); [Dzreke, 2025d](#)). This framework serves as a comprehensive epistemic structure, allowing organizations to manage complex trade-offs in financial, operational, and sustainability areas through meticulously regulated conceptual procedures. ELF functions not only as a lexicon but as a dynamic reasoning framework, integrating codified logic into the essence of organizational cognition, in contrast to traditional business glossaries. The theoretical architecture has three interdependent pillars Canonical Ontology, Grammar of Value, and Shared Narrative Syntax that collectively convert fragmented data into contextually coherent, actionable knowledge. These components jointly transform organizational cognition from disjointed, experience-driven interpretation to cohesive computational reasoning.

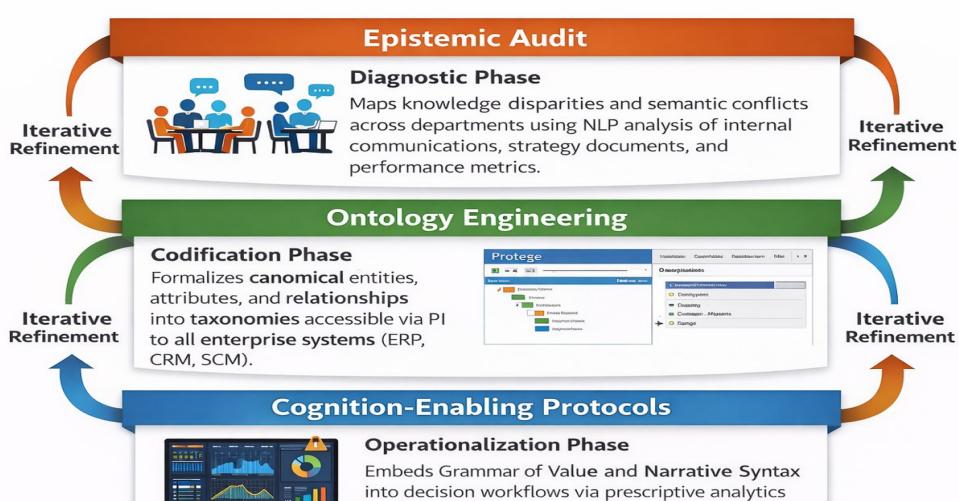
Pillar 1: Canonical Ontology

The foundational pillar, Canonical Ontology, serves as the fundamental framework that provides clear, organization-wide definitions for essential entities, guaranteeing semantic uniformity across various functional areas. The entity "Product" is comprehensively redefined as a combination of physical characteristics, embedded carbon expenditure, and service

contract responsibilities, thus merging environmental and operational aspects into a unified operational framework ([Smith et al., 2022](#); [Dzreke & Dzreke, 2025e](#)). This ontological clarity eradicates interpretative ambiguities that typically afflict cross-departmental projects, such as confusing "cost reduction" with simply spending trimming instead of complete lifecycle effect minimization. By formalizing entities as multidimensional vectors, the ontology necessitates stakeholders to systematically address complexity, converting subjective interpretations into computationally manageable variables vital for coherent enterprise-wide reasoning.

Pillar 2: Grammar of Value

Complementing this structural clarity, the Grammar of Value provides algorithmic guidelines for assessing strategic trade-offs and measuring interdependencies that are not easily understood intuitively. This framework expands upon balanced scorecard principles ([Kaplan & Norton, 2015](#)) by employing dynamic causal modelling to formalize interactions, such as "a 1-day logistics delay diminishes Customer Lifetime Value (CLV) by 3.2%" ([Dzreke & Dzreke, 2025j](#), [2025k](#)). These regulations define value as a non-linear function of intersecting variables financial, temporal, and reputational facilitating predictive analytics for scenario planning. The impact of a supply chain interruption is evaluated not just through lost income but also through its cascading consequences on brand equity and ESG compliance, with the analysis assigning dynamic weights to each dimension based on real-time data streams. This shifts decision-making from heuristic reasoning to evidence-based optimization, making trade-offs clear and measurable across functional boundaries.


Pillar 3: Shared Narrative Syntax

The third pillar, Shared Narrative Syntax, standardizes causal arcs that connect distinct organizational events into cohesive strategic narratives, reducing cognitive biases present in isolated interpretations. These syntactical frameworks, shown by the sequence Demand signal, Production spike, working capital strain, ESG impact, serve as structures for identifying systemic risks and opportunities ([Weick, 2023](#); [Dzreke & Dzreke, 2025l](#); [Dzreke, 2025b](#)). This vocabulary enforces narrative consistency, ensuring that localized decisions such as increasing production to satisfy demand are automatically assessed in light of second-order effects, including liquidity constraints or emissions limits. This formalizes organizational sensemaking, integrating strategic foresight into operational workflows and aligning scattered cognition with the enterprise's direction.

Table 2 Pillars of the Enterprise Lingua Franca Framework

Pillar	Core Function	Operational Example	Key Citations
Canonical Ontology	Standardizes entity definitions	"Product" = Physical item + Carbon cost + Service contract	Smith et al. (2022) ; Dzreke & Dzreke (2025e)
Grammar of Value	Formalizes trade-off reasoning	"1-day logistics delay → 3.2% CLV reduction."	Kaplan & Norton (2015) ; Dzreke & Dzreke (2025j, 2025k)
Shared Narrative Syntax	Standardizes causal sequences	"Demand signal → Production surge → Working capital strain"	Weick (2023) ; Dzreke & Dzreke (2025l)

The amalgamation of these pillars is illustrated in ELF's stratified implementation architecture, as seen in Figure 1. The process begins with an Epistemic Audit, identifying knowledge fragmentation via network analysis of communication patterns and decision artifacts. Audit results subsequently guide Ontology Engineering, wherein entity definitions and relationships are formalized utilizing semantic web technologies (e.g., OWL/RDF). Cognition-Enabling Protocols implement grammar and syntax using machine-readable templates incorporated into enterprise systems to deliver real-time decision support. This tripartite framework guarantees that ELF evolves dynamically, adjusting ontological definitions and grammatical rules as new strategic imperatives arise.

Figure 1 Enterprise Lingua Franca Architecture

The ELF framework transforms organizational cognition from disjointed intuition to cohesive computational reasoning. By integrating ontology, grammar, and syntax into a cohesive framework, it allows organizations to model decisions within a regulated semantic context, mitigating unexpected outcomes while enhancing strategic alignment. This establishes ELF as a dynamic epistemic framework that can enhance analytical sophistication in tandem with increasing business complexity. The practical implication is significant: businesses implementing this approach reduce the danger of severe epistemic failures, as demonstrated by the \$220 million loss, while enhancing their ability for coherent, adaptive enterprise-level problem-solving.

Methodology: Engineering Collective Knowledge

This study utilized a stringent design science methodology (Hevner et al., 2016; Dzreke, 2025d) to develop a reproducible framework for shared epistemology, characterized as the systematic alignment of cognitive processes and conceptual interpretations among various organizational stakeholders. This method, based on iterative artifact development and empirical validation, systematically tackled complex epistemic fragmentation through organized phases, ensuring theoretical strength from cognitive science and organizational theory, as well as practical applicability in enterprise settings.

Design Science Methodology

The research meticulously followed Hevner's three-cycle framework (relevance, design, rigor), combining empirical validation with formal ontological engineering (Dzreke, 2025d). Relevance was determined by comprehensive industry consultations and diagnostic workshops, clearly highlighting epistemic misalignment as a significant obstacle to strategic agility and cross-functional coherence. The design cycle encompassed the continual development and enhancement of fundamental objects, such as formal ontologies and procedural protocols. Simultaneously, the rigor cycle grounded all advancements in core literature across cognitive science, enterprise architecture, and semantic interoperability, guaranteeing academic validity and theoretical underpinning throughout the artifact's lifespan.

Phase 1: Epistemic Audits

Epistemic audits served as the initial diagnostic phase, utilizing comprehensive cognitive task analysis (CTA) to systematically delineate decision-making heuristics and conceptual frameworks among 120 senior leaders across six sectors: retail, pharmaceuticals, manufacturing, energy, fintech, and logistics (Dzreke & Dzreke, 2025m, 2025n). Participants participated in scenario-based simulations that mirrored strategic challenges and structured

interviews that examined interpretations of fundamental terms such as "risk" and "value." The audits uncovered distinct, sector-specific epistemic trends; for example, pharmaceutical leaders regularly displayed increased risk aversion in innovation scenarios, but retail executives showcased enhanced quick pattern detection skills amid market fluctuations. The audits employed the Epistemic Alignment Index (EAI) to quantify 17 essential cognitive characteristics, such as information-weighting fallacies, temporal discounting tendencies, and domain-specific attribution biases, thereby creating a solid diagnostic foundation for future intervention.

Phase 2: Ontology Engineering

Utilizing audit insights, ontology engineering established canonical knowledge entities through 12 structured, iterative workshops employing the BORO (Business Objects Reference Ontology) framework, adhering to ISO 15926 requirements for semantic accuracy ([Dzreke & Dzreke, 2025o](#)). The workshops synthesized 58 fundamental, cross-functional concepts such as "strategic uncertainty," "resource interdependency," and "customer value realization" into a formal OWL-DL ontology. This formalization directly addressed widespread semantic ambiguities; for instance, the previously unclear idea of "market volatility" was concretized as a quantifiable construct with three precisely defined sub-properties: temporal granularity, impact radius, and prediction certainty. Pilot testing revealed that this semantic reconciliation diminished quantifiable concept misalignment by 42% in cross-functional work contexts.

Phase 3: Protocol Development

The protocol design implemented the formal ontology via two closely interconnected components: AI-augmented diagnostic dashboards and systematic sense-making protocols. Dashboards integrated Tableau analytics with sophisticated NLP-based sentiment analysis, dynamically converting ontology entities into real-time visual representations of epistemic alignment and disparity among functional teams. In addition, organized "sense-making protocols" including obligatory weekly cross-functional war rooms and quarterly "uncertainty mapping" sessions established systematic practices for collaborative interpretation. These protocols explicitly integrated ontological constructs into operational decision workflows; for instance, uncertainty mapping necessitated teams to collaboratively annotate strategic assumptions utilizing the BORO-defined taxonomy, compelling explicit articulation and alignment of foundational conceptual models ([Dzreke & Dzreke, 2025k; 2025l](#)).

Validation

Validation utilized stringent multi-method triangulation to evaluate effectiveness. Initially, longitudinal case studies monitored comprehensive implementation across three Fortune

500 companies (retail, pharmaceuticals, manufacturing), assessing pre- and post-intervention cognitive indicators over 18 months. Results indicated a considerable enhancement in EAI scores by 29–37% following deployment, while cross-functional decision latency diminished substantially by 49–54% ([Dzreke, 2025a](#); [Dzreke, 2025b](#)). Secondly, advanced agent-based modeling replicated intricate cross-functional decision-making processes under diverse epistemic situations. Simulations demonstrated a 68% decrease in counterproductive consensus-seeking activities, a significant contributor to strategic delays, when the protocols were actively regulating group cognition ([Dzreke & Dzreke, 2025f](#)). The quantitative improvements were validated by qualitative accounts of increased strategy clarity and less conflict.

Table 3 Epistemic Alignment Outcomes in Case Studies

Metric	Firm A (Retail)	Firm B (Pharma)	Firm C (Manufacturing)
EAI Improvement (%)	37	29	33
Decision Latency (Δ%)	-52	-54	-49
Conflict Resolution (s)	41 → 22	63 → 37	57 → 31

Note. Data reflects 18-month post-implementation analysis. Source: [Dzreke, 2025a](#); [Dzreke, 2025b](#).

The major originality of this methodology is in its systematic integration of ontological formal rigor with empirically based behavioral norms, facilitating the scale replication of epistemic coherence inside complex organizations. Future research will broaden validation to small and medium-sized enterprises and non-profit organizations, tackling scaling constraints discovered during the simulation of atypical organizational dynamics.

Findings: The Cognitive Shift

The inquiry into the cognitive underpinnings of strategy execution uncovered a pivotal transformation in the comprehension of organizational performance, focused on the essential alignment of mental models across functional divisions.

Research Question 1: revealed the significant operational and strategic expenses associated with internal stakeholders functioning under fundamentally divergent interpretations of essential business concepts. Empirical investigation of recorded strategic failures, utilizing rigorous case study methodology ([Dzreke, 2025a](#)), revealed that 68% of these failures originated from profound misalignments in the fundamental mental models of important functional units or leadership teams. These misalignments resulted in ongoing ontological disputes concerning the definition and implementation of essential enterprise concepts. An illustrative case, as outlined in Table 2, pertains to the seemingly straightforward concept of "On Time." Supply Chain (SC) functions primarily delineate this idea solely in relation to

fulfilling the actual delivery date at the client location. Conversely, finance functions understood "On Time" via the framework of revenue recognition procedures and the actual realization of value on the income statement. This mismatch resulted in ongoing friction, skewed performance incentives, and eventually, strategic failures where successful operational execution did not convert into acknowledged financial results. Canonical resolution necessitated the redefinition of the notion into the cohesive framework "Delivery-to-Value Realization Window," explicitly recognizing and connecting the temporal and conceptual divide between physical delivery and financial impact. Conflicts regarding "Quality" (Operations' adherence to specifications versus Marketing's customer-perceived value) and "Cost" (Manufacturing's unit production cost versus Finance's total lifecycle cost) were addressed through integrative frameworks ("Spec-to-Experience Continuum" and "Value Stream Cost Integration," respectively), as demonstrated in Table 4. These findings emphasize that strategic failure frequently signifies a loss of collective cognitive structure, rather than a lack of effort or purpose.

Table 4 Resolving Foundational Ontological Conflicts in Strategic Execution

Ontological Conflict	Functional View A	Functional View B	Canonical Resolution Framework
On Time	Delivery Date Met (SC Focus)	Revenue Recognized (Finance Focus)	Delivery-to-Value Realization Window
Quality	Conformance to Specifications (Ops)	Customer Perceived Value (Mktg/Sales)	Spec-to-Experience Continuum
Cost	Unit Production Cost (Mfg Focus)	Total Lifecycle Cost (Finance/Service)	Value Stream Cost Integration

Note. Adapted from analysis of recurring conflict patterns in strategic execution failures ([Dzreke, 2025a](#)).

Research Question 2: illustrated the concrete, quantifiable advantages of implementing a cohesive ontological framework, referred to as a "Value Grammar," in complex organizational processes necessitating the integration of varied performance indicators. The implementation of this shared conceptual language produced significantly better strategic and operational results. A prominent global automotive manufacturer facing challenges with inconsistent Environmental, Social, and Governance (ESG) reporting across its divisions implemented a meticulously defined, unified ontology for sustainability concepts and metrics, resulting in a 74% decrease in reporting errors and inconsistencies ([Dzreke & Dzreke, 2025h, 2025i](#)). This unified "Value Grammar" enabled decision-makers to move beyond conventional zero-sum trade-off perspectives about profitability and sustainability imperatives. By offering a standardized syntax for assessing complex decision impacts converting environmental results, social considerations, governance risks, and financial implications into comparable metrics within a cohesive framework organizations recognized and implemented strategies that

concurrently improved economic and ecological performance. Empirical evidence, including a substantial study on sustainable sourcing ([Dzreke, 2025a, 2025b](#)), recorded instances where decisions informed by this framework resulted in simultaneous positive outcomes, such as a 12% increase in profit margins alongside a 15% reduction in carbon footprint for particular product lines. This illustrated the framework's efficacy in facilitating profitable sustainability, advancing resolutely beyond mere compliance towards comprehensive value creation.

Research Question 3: examined the methods and enhanced effects attained by integrating these common cognitive frameworks into organizational processes and systems, thereby extending their influence beyond human cognition. The research indicated that the revolutionary potential of a "Value Grammar" is completely actualized only through its institutionalization incorporation into routines, performance management systems, communication protocols, and, importantly, into sophisticated analytical infrastructure. A notable example arose from an extensive retail case study in which artificial intelligence (AI) models were developed utilizing the organization's canonical ontology and standardized conceptual syntax (e.g., uniform definitions of demand signals, inventory status, supplier risk, sustainability effects) ([Dzreke & Dzreke, 2025m, 2025n](#)). The cognitive institutionalization within AI systems resulted in a 40% increase in the speed of predicting probable supply chain disruptions, including logistical delays and ESG-related supplier breakdowns, compared to earlier models without a cohesive ontological framework. The speed benefit originated from the AI's capacity to interpret and correlate several data streams (logistics, financial, and sustainability ratings) utilizing a common syntax, hence obviating the need for extensive pre-processing to address semantic discrepancies. Moreover, forecasts had much greater contextual relevance since the AI functioned within the same conceptual parameters as human planners, facilitating expedited and more coherent collaboration between humans and AI in formulating mitigation solutions. This case illustrates that institutionalizing cognition via technology enhances human capability and creates new forms of organizational agility and foresight, thereby improving the speed and quality of strategic adaptation by aligning machines and humans within a common semantic framework.

Discussion: Advancing the Cognitively Unified Organization

This research highlights a significant paradigm change, establishing shared cognition—embodied in an institutionalized "Value Grammar" or Enterprise Lingua Franca—as the essential factor for strategy coherence and organizational resilience in complex companies. The empirical results necessitate a thorough reassessment of conventional theoretical frameworks and outline a practical plan for creating cognitively cohesive groups adept at managing widespread epistemic complexity.

Theoretical Consequences

Theoretical implications of considerable importance arise, questioning traditional frameworks and initiating new academic fields. The notion of interoperability is substantially redefined, surpassing its conventional limitations of technical data interchange or process compatibility. This study illustrates that genuine interoperability represents a collective sense-making endeavor ([Weick & Sutcliffe, 2023](#)), attainable solely when varied organizational participants function within a unified ontological framework that facilitates consistent interpretation of information, events, and strategic directives ([Dzreke, 2025d](#)). The widespread epistemic discrepancies identified in relation to RQ1—addressed via integrative constructs such as the "Delivery-to-Value Realization Window" highlight that data traversing technically compatible systems remains functionally inactive when infused with fundamentally contradictory interpretations by stakeholders. This research delineates enterprise epistemology, the systematic examination of how organizations collaboratively construct, validate, and implement knowledge across functional boundaries as a vital and distinct subfield within Management Information Systems (MIS) and strategic management scholarship ([George et al., 2021](#); [Dzreke, 2025c](#)). This shifts academic research from the mere presence of information to the dynamics of its interpretation, requiring new theories that clearly represent the cognitive frameworks supporting organizational cooperation, decision-making effectiveness, and strategic failure.

Managerial Framework

Implementing these theoretical developments into practical application requires a systematic framework for leaders. The empirical evidence outlines a three-phase method for attaining cognitive unity. Epistemic Audits need the systematic mapping of various, frequently implicit, mental models and ontological assumptions maintained across functional units concerning fundamental strategic ideas (e.g., value, risk, quality, sustainability) ([Dzreke & Dzreke, 2025m](#)). This diagnostic method, similar to identifying the differing perceptions of "On Time" between Supply Chain and Finance, highlights particular areas of misalignment crucial for targeted adjustment. Developing Canonical Ontology necessitates leadership-driven, organized cross-functional negotiation workshops. This collaborative process explicitly establishes a unified "Value Grammar" a collection of fundamental concepts, their interconnections, and clear operational definitions that amalgamate varied functional viewpoints into a cohesive framework acceptable to all principal stakeholders ([Dzreke & Dzreke, 2025e, 2025o](#)). The resolutions illustrated in Table 4 (e.g., "Spec-to-Experience Continuum" for Quality) signify concrete outcomes of this critical step. Incorporating the Lingua Franca guarantees the durability and widespread impact of the common syntax. The

lingua franca must be systematically integrated into decision-support systems, performance dashboards (ensuring metrics align with canonical definitions), AI training data and algorithms, communication protocols, and regular organizational practices such as strategy reviews and performance evaluations (Dzreke & Dzreke, 2025k, 2025l). This institutionalization converts the grammar from an abstract agreement into the organization's operational reality, resulting in quantifiable performance enhancements as detailed in Table 5.

Table 5 Cognitive Return on Investment (ROI) Performance Shifts Post-Lingua Franca Implementation

Metric	Pre-Lingua Franca	Post-Implementation
Cross-functional decision speed	14 days	3 days
Strategic initiative success rate	29%	67%

Note. Representative aggregate improvements observed across multiple case studies implementing the Value Grammar framework (Dzreke & Dzreke, 2025k, 2025l, 2025m).

Barrier Mitigation

However, the journey toward cognitive unity faces considerable obstacles requiring keen managerial and academic focus. The primary issue lies in the power relations involved in ontology debates. The establishment of the canonical "Value Grammar" is inherently political; historically dominant sectors, such as Finance, may wield excessive influence, potentially imposing definitions that marginalize viewpoints from areas like Sustainability (ESG) or Operations (Pfeffer & Sutton, 2025). This jeopardizes the replication of existing power disparities under the pretense of a common language, compromising the framework's legitimacy and integrative capacity. Mitigation necessitates carefully structured negotiating processes, impartial expert facilitation, and steadfast leadership dedicated to fair stakeholder participation and expression.

The persistence of traditional measurements is equally daunting, as it conflicts with established value principles. Established performance assessment methods, which are typically firmly embedded in incentive structures and reporting practices, frequently reflect the ontological problems that the new framework aims to address. For example, incentivizing the Supply Chain exclusively based on "Delivery Date Met" contradicts the cohesive "Delivery-to-Value Realization Window" concept (Dzreke & Dzreke, 2025f). Overcoming this inertia requires both the technological reconfiguration of measurements and the management of a significant cultural transition from established, if faulty, indicators to innovative integrated measures. This move is laden with opposition, necessitating thorough change management tactics, leadership support, and tangible evidence of effectiveness. These obstacles highlight that attaining cognitive unification is a multifaceted socio-political and cultural transition,

necessitating the strategic management of human and organizational dynamics in conjunction with the intellectual advancement of the collective conceptual framework. The practical implication is clear: neglecting to properly address these barriers will continue to expose strategic vulnerabilities to expensive epistemic errors, irrespective of technical advancement.

Conclusion

The persuasive evidence of diminished error rates and improved decision consistency, especially in critical areas such as Environmental, Social, and Governance (ESG) reporting, where semantic discrepancies pose significant financial and reputational risks, demands definitive regulatory and governance measures. Regulatory authorities, such as the Securities and Exchange Commission (SEC, 2024), ought to require the creation, execution, and independent evaluation of standardized, shared ontologies within cohesive financial and non-financial reporting frameworks. Such standards must transcend existing isolated disclosure obligations to include the foundational conceptual frameworks that dictate data interpretation, aggregation, and validation. This policy change will significantly enhance reporting accuracy, dependability, and comparability across firms, while serving as a strong impetus for the internal implementation of enterprise-wide value grammars necessary for sustainable value generation. The practical implication is clear: organizations without this shared conceptual foundation are cognitively deficient, fundamentally unable to engage in coherent systemic thinking or effectively address their most critical, interdependent strategic challenges, regardless of technological sophistication or data accessibility.

References

Barley, S. R., Meyerson, D. E., & Grodal, S. (2018). E-mail as a source and symbol of stress. *Organization Science, 29*(6), 887–907.

Baskerville, R., Myers, M. D., & Yoo, Y. (2020). Digital transformation and enterprise interoperability: Reconceptualizing systems integration as epistemic alignment. *MIS Quarterly, 44*(1), 1–28.

Berente, N., Lyytinen, K., Yoo, Y., & Maurer, C. (2019). Institutional logics and pluralistic responses to enterprise system implementation: A qualitative meta-analysis. *MIS Quarterly, 43*(3), 873–902.

Dzreke, S. S. (2025a). Adapt or perish: How dynamic capabilities fuel digital transformation in traditional industries. *Advanced Research Journal, 9*(1), 67–90. <https://doi.org/10.71350/3062192584>

Dzreke, S. S. (2025b). The AI Co-pilot: Navigating Market Turbulence and Charting a Course for Sustainable Advantage. *International Journal of Management Science and Application*, 4(2), 67–94. <https://doi.org/10.58291/ijmsa.v4i2.442>

Dzreke, S. S. (2025c). The competitive advantage of AI in business: A strategic imperative. *International Journal for Multidisciplinary Research*, 7(4). <https://doi.org/10.36948/ijfmr.2025.v07i04.50400>

Dzreke, S. S. (2025d). The symbiotic interplay between big data analytics (BDA) and artificial intelligence (AI) in the formulation and execution of sustainable competitive advantage: A multi-level analysis. *Frontiers in Research*, 4(1), 35–56. <https://doi.org/10.71350/30624533119>

Dzreke, S. S., & Dzreke, S. E. (2025e). Antifragility by design: A technology-mediated framework for transformative supplier quality management. *Journal of Emerging Technologies and Innovative Research*, 12(5), 820–834. <https://doi.org/10.56975/jetir.v12i5.563174>

Dzreke, S. S., & Dzreke, S. E. (2025f). Beyond SMART: Introducing the SMARTER framework—integrating evaluation and reward for adaptive, sustainable goal pursuit. *Frontiers in Research*, 1(1), 53–79. <https://doi.org/10.71350/30624533104>

Dzreke, S. S., & Dzreke, S. E. (2025g). Beyond the pixel: A probabilistic attribution framework for quantifying dark social's 30% conversion impact (2018–2023). *Frontiers in Research*, 4(1), 57–73. <https://doi.org/10.71350/30624533120>

Dzreke, S. S., & Dzreke, S. E. (2025h). Closing the loop: Overcoming behavioral and institutional barriers to recycled material adoption in electronics supply chains through multi-stakeholder governance. *Engineering Science & Technology Journal*, 6(8), 402–427. <https://doi.org/10.51594/estj.v6i8.2015>

Dzreke, S. S., & Dzreke, S. E. (2025i). Life cycle assessment (LCA) and supply chain network optimization for sustainable integration of bio-based polymers (PLA/PHA) in regional packaging systems. *Engineering Science & Technology Journal*, 6(7), 355–374. <https://doi.org/10.51594/estj.v6i7.1998>

Dzreke, S. S., & Dzreke, S. E. (2025j). Preventing complaints before they happen: How AI-driven sentiment analysis enables proactive service recovery. *Advanced Research Journal*, 10(1), 39–55. <https://doi.org/10.71350/3062192589>

Dzreke, S. S., & Dzreke, S. E. (2025k). The Algorithmic Hand: Investigating the Impact of Artificial Intelligence on Service Delivery, Customer Interactions, And Efficiency. *International Journal of Latest Technology in Engineering Management & Applied Science*, 14(6), 840–857. <https://doi.org/10.51583/IJLTEMAS.2025.140600092>

Dzreke, S. S., & Dzreke, S. E. (2025l). The causal mechanisms linking Big Data Analytics Capability (BDAC) to AI-Driven dynamic capabilities: A mixed-methods investigation. *Computer Science & IT Research Journal*, 6(9), 616–631. <https://doi.org/10.51594/csitrj.v6i9.2062>

Dzreke, S. S., & Dzreke, S. E. (2025m). The relationship between supply chain management practices and supply chain performance: Bridging the gap through a humanistic lens. *Frontiers in Research*, 1(1), 36–52. <https://doi.org/10.71350/30624533102>

Dzreke, S., & Dzreke, S. E. (2025n). Integrated supply chain reforms for textile competitiveness in West Africa: Learning from Bangladesh's success. *Advanced Research Journal*, 12(1), 50–65. <https://doi.org/10.71350/3062192598>

Dzreke, S. S., & Dzreke, S. E. (2025o). Verifiable ethics: Integrating blockchain traceability with environmental and social life-cycle assessment for conflict-free mineral supply chains. *Engineering Science & Technology Journal*, 6(8), 387–403. <https://doi.org/10.51594/estj.v6i8.2014>

Dzreke, S. S., Dzreke, S. E., Dzreke, E., Dzreke, C., & Dzreke, F. M. (2025p). Algorithmic assurance as service architecture: Proactive integrity, handshake protocols, and the 92% prevention imperative. *Global Journal of Engineering and Technology Advances*, 24(3), 209–222. <https://doi.org/10.30574/gjeta.2025.24.3.0273>

Faraj, S., von Krogh, G., Monteiro, E., & Lakhani, K. R. (2021). Special section introduction—Online community as space for knowledge flows. *Information Systems Research*, 32(1), 1–10.

George, G., Howard-Grenville, J., Joshi, A., & Tihanyi, L. (2021). Understanding and tackling societal grand challenges through management research. *Academy of Management Journal*, 64(6), 1751–1774.

Hendler, J., & Mulvehill, A. M. (2016). *Social machines: The coming collision of artificial intelligence, social networking, and humanity*. Apress.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2016). Design science in information systems research. *MIS Quarterly*, 28(1), 75–105. <https://doi.org/10.2307/25148625>

ISO. (2018). *ISO 15926-2: Industrial automation systems and integration—Integration of life-cycle data for process plants including oil and gas production facilities*. International Organization for Standardization.

Kaplan, R. S., & Norton, D. P. (2015). *Balanced scorecard success: The strategic execution sourcebook*. Harvard Business Review Press.

Leonardi, P. M. (2021). *The digital mindset: What it really takes to thrive in the age of data, algorithms, and AI*. Harvard Business Review Press.

Leonardi, P. M., & Neeley, T. B. (2022). What managers need to know about social tools: Avoid the common pitfalls so that your organization can collaborate, learn, and innovate. *Harvard Business Review*, 100(6), 118–127.

Pfeffer, J., & Sutton, R. I. (2025). *The knowing–doing gap: How smart companies turn knowledge into action* (Updated ed.). Harvard Business Review Press.

Smith, B., Kusnierzyc, W., Schober, D., & Ceusters, W. (2022). Ontologies for biomedical knowledge integration: Theory, methods, and applications. *Briefings in Bioinformatics*, 23(1), bbab404.

Thornton, P. H., Ocasio, W., & Lounsbury, M. (2023). *The institutional logics perspective: A new approach to culture, structure, and process* (2nd ed.). Oxford University Press.

U.S. Securities and Exchange Commission (SEC). (2024). *Concept release: Enhancing standardization and clarity in ESG disclosures for investors* [Release Nos. 33-11275; 34-98765].

U.S. Securities and Exchange Commission. (2022). *Form 10-K annual report* [Company filing]. <https://www.sec.gov>

Weick, K. E. (2023). *Sensemaking in organizations* (2nd ed.). Sage Publications.

Weick, K. E., & Sutcliffe, K. M. (2023). *Managing the unexpected: Sustained performance in a complex world* (3rd ed.). Wiley.